

Network IDS Alert Classification with Frequent
Itemset Mining and Data Clustering

Risto Vaarandi and K�rlis Podi�š

Copyright ©2010 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.

Reprinted from Proceedings of the 2010 IEEE Conference on Network and Service Management

(ISBN: 978-1-4244-8908-4)

Network IDS Alert Classification with Frequent
Itemset Mining and Data Clustering

Risto Vaarandi and K�rlis Podi�š
Cooperative Cyber Defence Centre of Excellence

Tallinn, Estonia
firstname.lastname@ccdcoe.org

Abstract—Network IDS is a well-known security measure for
network monitoring and protection. Unfortunately, IDSs are
known to generate large amounts of alerts, with many of them
being either false positives or of low importance. This makes it
hard for the human to spot alerts which need more attention. In
order to tackle this issue, this paper proposes an IDS alert
classification method which is based on data mining techniques.

Keywords-alert classification; intrusion detection; data mining

I. INTRODUCTION

Network IDS (intrusion detection system) is a well-known
security measure for network monitoring and protection.
Network IDS monitors network segments for malicious or
other unwanted traffic and produces alerts when such traffic is
observed. Many network IDSs use the signature based
approach for detecting unwanted traffic – IDS sensors are
equipped with human written rules (signatures) which describe
bad network packets. Despite IDS solutions have been used for
more than a decade, an important problem is still not fully
addressed – IDS can produce a large number of alerts which
are overwhelming to the human. For example, a single IDS
sensor can generate tens of thousands of alerts in a day [1, 2].
Furthermore, often vast majority of the alerts are false positives
or of low importance [2–7].

For these reasons, IDS alert processing techniques have
been extensively researched [1–15]. Among proposed methods,
data mining based approaches have been frequently suggested
during the past decade [2–10]. With these approaches, IDS
alert logs from the recent past are mined for previously
unknown regularities and irregularities, and the detected
knowledge is then used by the human for developing alert
correlation rules (such as filters for false positives).
Unfortunately, this inherently semi-automated procedure is
expensive, since the domain expert has to interpret the
knowledge and write correlation rules by hand. Moreover,
since most IT environments are constantly changing, this
procedure has to be carried out regularly which further
increases its cost [2, 5].

In this paper, we extend our previous work on IDS alert
classification [2], and present a novel unsupervised real time
alert classification method which is based on frequent itemset
mining and data clustering techniques. Unlike other data
mining based approaches, our method fully automates the
process of knowledge interpretation and construction of alert

filtering rules. Furthermore, due to its unsupervised and
automated nature, the method does not need human-labeled
training data and is able to adjust to environment changes
without a human intervention.

The remainder of this paper is organized as follows –
section II presents an overview of related work, section III
provides an in-depth discussion of our alert classification
method, section IV describes experiments for evaluating the
performance of the method, and section V concludes the paper.

II. RELATED WORK

During the last decade, IDS alert processing techniques
have received considerable amount of attention in the research
community. Pietraszek has proposed machine learning methods
for IDS alert classification, in order to reduce the amount of
false positives [13]. Viinikka et al. have suggested the use of
time series modeling for modeling regularities in large alert
volumes [1, 12]. Other proposed methods include the
application of EWMA control charts for monitoring IDS alerts
produced by verbose signatures [11], the application of the
chronicles formalism for temporal alert correlation [14], and
graph-based correlation methods [15]. For IDS alert log
mining, a number of approaches have been proposed. Treinen
and Thurimella have investigated the application of association
rule mining for the detection of rules for novel attack types [6].
Clifton and Gengo have used a similar approach for building
IDS alert filters [8]. Long, Schwartz and Stoecklin have
suggested a supervised clustering algorithm for distinguishing
Snort IDS true alerts from false positives [7]. Julisch and
Dacier have proposed a conceptual clustering technique for
IDS alert logs [3–5]. With this approach, detected clusters
correspond to alert descriptions, and the human expert can use
them for developing filtering and correlation rules for future
IDS alerts. During their experiments, Julisch and Dacier found
that these hand written rules reduced the number of alerts by an
average of 75% [4] and 87% [5]. Al-Mamory, Zhang and
Abbas have suggested clustering algorithms for finding
generalized alarms which help the human analyst to write
filters [9, 10]. During the experiments, the number of alarms
decreased by 93% [9] and 74% [10].

In our recent paper [2], we have proposed an IDS alert
classification algorithm which distinguishes important alerts
from redundant ones. Our algorithm first employs frequent
itemset mining for detecting patterns that describe frequently

This work was supported by the SEB financial group. This paper is a
product of the authors; it does not represent the opinions or official policies of
the CCD CoE or NATO and is designed to provide an independent position.

occurring redundant alerts. The algorithm then extracts
signature IDs from detected patterns and finds frequent
endpoint sets which describe strong associations between alert
attribute values for each ID. Detected sets will be used for
restricting the matches produced by too generic patterns.
Although this heuristic was found to be efficient [2], frequent
endpoint sets don’t capture all strong associations between alert
attribute values. For instance, the heuristic makes an
assumption that all associations for a given signature ID are of
the same type (e.g., between values of transport protocol and
destination port attributes), while this is not always the case. In
the following section, we will describe a new classification
method which addresses this issue.

III. IDS ALERT CLASSIFICATION

In this section, we propose an IDS alert classification
method which relies on frequent itemset mining and data
clustering algorithms. Our method first applies a frequent
itemset mining algorithm to past IDS alert logs, in order to
discover patterns that describe redundant alerts. After that, data
clustering techniques are used for finding fine-grained
subpatterns for each detected pattern. Finally, the detected
knowledge is interpreted and employed for real time
classification of IDS alerts, in order to distinguish important
alerts from irrelevant ones. The mining and interpretation steps
are periodically repeated for keeping the classification
knowledge up-to-date, thus the method is able to adjust to
environment changes without a human intervention.

A. Properties of IDS Alert Log Data
Before providing a detailed description of our classification

method, we will discuss special properties of IDS alert log data
which the method relies on. We have observed these properties
when analyzing the logs of three Snort IDS sensors of a large
financial institution. Two sensors are deployed in the external
network perimeter and one sensor in the intranet; all sensors are
equipped with more than 15,000 signatures. The logs for three
sensors covered a time frame of one year, and contained
55,484,833 alerts, 2,444,414 alerts, and 57,303,494 alerts,
respectively.

First, we discovered that only a few signatures trigger most
of the alerts – for three sensors described above, 10 most
prolific signatures triggered 97.54%, 81.81%, and 95.53% of
all alerts, respectively. During our past research, we have
observed the same property [2], and experiments by other
researchers have yielded similar results [1, 12]. Second, we
discovered that prolific signatures have a tendency to trigger
alerts over longer periods of time. For example, when we
inspected 10 most prolific signatures for the three
aforementioned IDS sensors, we found that for the first sensor,
9 signatures produced alerts for more than 170 days and 6 for
more than 360 days. For the second sensor, 8 signatures
produced alerts for more than 258 days and 7 for more than
344 days. For the third sensor, all 10 signatures produced alerts
for more than 164 days and 6 for more than 351 days.

Third, when we inspected the signatures that trigger alerts
frequently over long periods of time, we discovered that the
number of such signatures is relatively small, yet they produce

most of the alerts, with vast majority of them being either false
positives or alerts of low importance. During one experiment,
we divided the IDS logs into 365 slices, with each slice
covering one day. We found that for the three IDS sensors
described above, only 25, 17, and 20 signatures triggered alerts
for at least 300 days, respectively. However, these signatures
produced 90.94%, 79.68%, and 70.14% of all alerts,
respectively, with the majority of them being irrelevant. Similar
property has been observed by other researchers [1]. Table I
lists data for top 5 signatures for one Internet and one intranet
IDS sensor. The signatures from Table I trigger alerts which
represent either well-known threats of low importance or false
positives in the local environment. One of the well-known
threats is the MS Slammer Sapphire worm which is detected by
signatures 1:2003 and 1:2050. Other threats of low importance
are very frequently occurring ping scans which are detected by
signatures 1:483 and 1:469. As for false positive alerts, they are
generated for routine network management traffic (signatures
1:2006779, 1:1419 and 1:480), for legitimate workstation
traffic (signature 1:466), and for normal SSL and SSH traffic
(signatures 1:8428 and 1:2001980). In the rest of this paper, we
call such frequently occurring redundant alerts routine alerts.

Given the properties of IDS alert log data, it is obvious that
IDS alert logs contain strong patterns in many environments,
and these patterns often correspond to routine alerts. Therefore,
the mining of frequent patterns from IDS alert logs yields
valuable knowledge for alert classification. Since the output
from different IDS sensors varies even within the same
organization and is highly dependent on the sensor location, it
often makes sense to mine patterns from each sensor log
separately. For the sake of simplicity, we assume in the
remainder of the paper that the IDS alert log is produced by a
single sensor.

TABLE I. SIGNATURES THAT TRIGGER REDUNDANT ALERTS
FREQUENTLY

Sensor
location

Signature
ID

Signature
description

of
days # of alerts

Internet 1:483
ICMP Ping
Cyberkit 2.2
Windows

361 46,967,725

Internet 1:469 ICMP Ping Nmap 362 750,748

Internet 1:2050 SQL version
overflow attempt 365 465,087

Internet 1:2003
SQL Worm
propagation
attempt

365 465,086

Internet 1:2006779
Nagios HTTP
Monitoring
Connection

365 288,520

Intranet 1:466 ICMP L3retreiver
Ping 365 19,318,057

Intranet 1:1419 SNMP trap udp 365 14,922,302

Intranet 1:2001980
SSH Client
Banner Detected
on Unusual Port

359 1,909,080

Intranet 1:480 ICMP ping
speedera 352 1,332,600

Intranet 1:8428
SSLv2 openssl get
shared ciphers
overflow attempt

354 729,523

B. Frequent Itemset Mining for IDS Alert Logs
We model the IDS alert log L as a finite sequence of alerts

L = (A1, …, Am), and assume that each alert has attributes no,
time, ID, proto, srcIP, srcPort, destIP, and destPort. If � is an
attribute and A is an alert, A� denotes the value of attribute �
for alert A. If A is the k-th alert from L (i.e., A = Ak), we view it
as a tuple A = (Ano, Atime, AID, Aproto, AsrcIP, AsrcPort, AdestIP,
AdestPort), where Ano equals to k (1 � Ano � m), Atime is the
occurrence time of A, AID is the ID of the signature that
produced A, Aproto is the network protocol for the traffic which
triggered A, while AsrcIP, AsrcPort, AdestIP, and AdestPort are the
source IP address, source port, destination IP address, and
destination port for the traffic which triggered A (if the network
protocol does not involve ports, AsrcPort and AdestPort equal to the
constant ‘-‘).

Let I = {i1,...,in} be a set of items. If X � I, X is called an
itemset. A transaction is a tuple (tid, X), where tid is a
transaction identifier and X is an itemset. A transaction
database D is a set of transactions, and the support of an
itemset X is the number of transactions that contain X:
supp(X) = |{tid | (tid, Y) � D, X � Y}|. If s is a support
threshold and supp(X) � s, X is called a frequent itemset. If
itemset X does not have any proper supersets with the same
support, X is called a closed itemset. If D is a transaction
database and s is a support threshold, Fclosed(D, s) denotes the
set of all closed frequent itemsets for D and s. Note that the
support threshold is often specified as a percentage p% which
means that s = |D|*p/100.

During our past research, we have developed a tool called
LogHound which implements an efficient frequent itemset
mining algorithm for finding patterns from log files [16]. In
order to apply LogHound to IDS alert log L, we have
configured it to view each alert A from L as a transaction
(Ano, X), where X = {(AID,1), (Aproto,2), (AsrcIP,3), (AsrcPort,4),
(AdestIP,5), (AdestPort,6)}. If L is viewed as a transaction database
D(L) in such a way, frequent closed itemsets from D(L)
correspond to IDS alert patterns. For example, the itemset
{(1:2003,1), (UDP,2), (1434,6)} indicates that the MS Slammer
Sapphire worm (detected by the signature 1:2003) frequently
hits the destination port 1434/udp. Note that this alert pattern
can be also written as a string 1:2003 UDP * * * 1434. In the
remainder of this paper, we will often use this string notation
for itemsets, and we will also use the terms pattern and itemset
interchangeably.

If A = (Ano, Atime, AID, Aproto, AsrcIP, AsrcPort, AdestIP, AdestPort) is
an alert and P is a pattern, we say that A matches P if P �
{(AID,1), (Aproto,2), (AsrcIP,3), (AsrcPort,4), (AdestIP,5), (AdestPort,6)}.
If � is the set of all valid alerts that the IDS sensor can
produce, the alert classifier is a function f: � � {0, 1}, where
the function value 1 denotes “interesting” and 0 “routine”.

The alert classifier could be defined in a trivial way – an
alert is considered routine if some frequent closed pattern
matches it, otherwise it is considered interesting. While
building such a classifier is straightforward, it has several
drawbacks. First, unusual and intensive short-term malicious
network activity might trigger many uncommon alerts. If the
number of such alerts is sufficiently large, patterns that reflect

them would be detected as frequent, even if the alerts appear
only in a small time frame of the log. Therefore, the classifier
would mistakenly consider similar future alerts as routine.
Second, IDS log mining often involves the over-generalization
problem – some detected patterns could be too generic for alert
classification [2, 4]. For example, the pattern * TCP * *
10.2.1.17 25 would mistakenly label uncommon alerts from
non-verbose signatures as “routine”.

In order to address the first issue and handle the bursts of
uncommon alerts, we split the IDS alert log into smaller slices,
where each slice covers a time frame of equal length. Formally,
if L is an IDS alert log, t is time, and d is a time interval, the log
slice Lt,d is defined as follows: Lt,d = {A | A � L,
t � Atime < t + d}. We then mine patterns from each slice, and a
pattern will be used for classification only if it is discovered in
many slices. The set of patterns selected for alert classification
is denoted by FC. Since only a few slices contain patterns for
uncommon alerts, such patterns will be excluded from FC (see
Fig. 2 for details). Please see our previous paper [2] for a more
thorough discussion of this technique.

C. Data Clustering for Pattern Refinement
As mentioned in the previous subsection, some frequent

patterns are too generic for IDS alert classification. For
example, suppose that only two Nagios network management
servers 10.6.1.1 and 10.23.5.7 can issue legitimate monitoring
queries to the web server 10.1.1.1, and that corresponding
frequent patterns 1:2006779 TCP 10.6.1.1 * 10.1.1.1 80 and
1:2006779 TCP 10.23.5.7 * 10.1.1.1 80 are detected for all log
slices. In that case, however, an overly generic pattern
1:2006779 TCP * * 10.1.1.1 80 will also be found frequent for
all slices, since its support can’t be smaller than the supports of
two previous patterns.

For handling the over-generalization problem, we first
exclude patterns without the signature ID information (e.g., the
pattern * TCP * * 10.1.1.1 80) from further analysis and
remove them from the set FC. We will then analyze each
remaining pattern in FC, in order to find if the majority of alerts
from L that match the pattern can be described with a moderate
number of more specific subpatterns. If such subpatterns exist,
they are used for improving the quality of alert classification –
apart from matching a pattern P from FC, an alert must also
match one of the subpatterns of P, in order to be classified as
“routine”.

For the subpattern discovery, we are using the SLCT data
clustering tool that has been developed previously by us for
efficient analysis of large log files [17]. SLCT favors specific
patterns over generic ones and thus suits well for the given
task. SLCT divides log file entries into clusters, where entries
from one cluster are similar to each other and are described
with a certain pattern. Entries that don’t fit to any of the
detected clusters are arranged to a special cluster of outliers.
When processing the log file, SLCT splits each entry into
tokens. If the entry is a sequence of n tokens w1 w2 … wn,
SLCT considers the entry as a set of words: {(w1,1),…,(wn,n)}
(i.e., each word is a token-position pair). In order to cluster the
log file, SLCT first finds frequent words that occur at least c
times in the data set, where c is the user given clustering

threshold. SLCT will then make a second pass over the data
set, in order to create cluster candidates – for each log file
entry, all frequent words are extracted from it and the set of
frequent words becomes a cluster candidate (i.e., if the entry
contains m frequent words (v1,p1),…,(vm,pm), the candidate is
{(v1,p1),…,(vm,pm)}). For each candidate, SLCT maintains an
occurrence counter, and after the data pass the candidates that
have occurred at least c times will be selected as clusters.

We have configured SLCT to view each alert A as a set of
six words {(AID,1), (Aproto,2), (AsrcIP,3), (AsrcPort,4), (AdestIP,5),
(AdestPort,6)}. It is easy to see that with this approach, each
detected cluster has the same structure as an alert pattern, and
thus we can define alert A matches cluster C in the following
way: C � {(AID,1), (Aproto,2), (AsrcIP,3), (AsrcPort,4), (AdestIP,5),
(AdestPort,6)}. Note that if alerts that match a pattern P are
clustered, then P � C for each detected cluster C, since
elements of P become words that are part of every alert. In
other words, every alert that matches C must also match P, and
therefore C acts as a more specific subpattern for P that
improves the quality of alert classification.

When using SLCT for clustering alerts that match frequent
patterns from FC, the patterns themselves and the amount of
matching alerts from L could vary a lot. Therefore, it is often
impossible to find a common clustering threshold suitable for
all patterns. In order to address this problem, SLCT is applied
to each set of alerts several times with different thresholds, and
after each clustering round the results are evaluated. After all
rounds, the threshold which yields the best results is selected
for clustering. We denote by L(P) the set of alerts from L which
match the pattern P from FC, while by CP we denote the best
set of clusters for P. In order to evaluate the clustering results
for L(P), we define GL(P),c for a given L(P) and threshold c as
follows: GL(P),c = minC’�CAL(P),c|C’|, where CAL(P),c is the set of
all clusters for L(P) and threshold c. Intuitively, larger values of
GL(P),c indicate that detected clusters are more specific, since all
clusters contain at least GL(P),c elements. We also denote the
cluster of outliers for L(P) and c by OL(P),c, and find clusters for
P with the FindBestClustering procedure from Fig. 1 (during
our experiments, typical values for M and pct have ranged
between 20...30 and 1...5, respectively). Informally, the
procedure seeks for the threshold which produces a moderate
number of clusters that cover the majority of alerts and are as
specific as possible. If no such threshold is found, CP is set to
{ P } which means that CP will not restrict the matches
produced by the pattern P (because for every alert that matches
P there is always a matching cluster in CP).

In order to address the over-generalization problem, the set
CP is detected for each pattern P from FC. Unfortunately,
although only a few signatures trigger routine alerts which
create frequent patterns in logs, the set FC could nevertheless
become quite large if lower support thresholds are used during
frequent itemset mining. In that case, there are often only a few
fairly generic patterns X1,…,Xk present in FC with many
specific patterns Y1,…,Ym, so that each Yj is a superset of some
cluster C for a certain Xi: �Xi � FC �C � CXi, C � Yj. However,
since Xi � C, then every alert A that matches Yj (i.e., Yj �
{(AID,1), (Aproto,2), (AsrcIP,3), (AsrcPort,4), (AdestIP,5), (AdestPort,6)})
must also match both Xi and C, and is thus classified as

“routine” regardless of Yj. Therefore, the pattern Yj is redundant
and can be excluded from FC.

Procedure FindBestClustering

Input:
P – pattern for which clusters are found
L(P) – set of IDS alerts which is clustered
seq = (c1, ..., cr) – sequence of clustering thresholds
pct – max percentage of alerts in the cluster of outliers
M – max number of clusters

Output: set of clusters CP

G := 0
c := -1
for each i := c1...cr do
 if (|OL(P),i| / |L(P)| � pct/100 AND |CAL(P),i| � M AND GL(P),i � G)
 then
 G := GL(P),i
 c := i
 fi
done
if (c = -1) then CP := { P } else CP := CAL(P),c fi
return CP

Figure 1. The procedure for finding the best set of clusters for a pattern.

Procedure BuildClassifier

Input:
L – IDS alert log
ts – beginning of the time window for mining
te – end of the time window for mining
s – support threshold
N – number of slices
K – pattern relevance threshold (1 � K � N)
seq – sequence of clustering thresholds
pct – max percentage of alerts in the cluster of outliers
M – max number of clusters

Output: definition of the alert classifier f: � � {0, 1}

d := (te – ts) / N
for each i = 1…N do Fi := Fclosed(D(Lts+(i-1)*d,d), s) done
F := F1 � … � FN

for each P in F do kP := |{Fj | 1 � j � N, P � Fj}| done
FC := {P | P � F, kP � K}
FwithoutID := {P | P � FC, ��id, (id,1) � P}
FC := FC \ FwithoutID
OrderPatterns(FC)
n := |FC|
Fredundant := �
for each j = 1…n, Pj in FC do
 if (��i, i < j, C � Pj, C � CPi) then
 L(Pj) := {A | A � Lts,te-ts , A matches Pj}
 CPj := FindBestClustering(Pj, L(Pj), seq, pct, M)
 CnotWellDistr := {C | C � CPj , IsWellDistributed(C) = FALSE}
 CPj := CPj \ CnotWellDistr
 else
 Fredundant := Fredundant � {Pj}
 fi
done
FC := FC \ Fredundant
return the following definition for the alert classifier:
 f(A) = 0, if �P � FC �C � CP, A matches P AND A matches C;
 1, otherwise

Figure 2. The procedure for building the alert classifier.

If there are many such redundant patterns, substantial
amount of CPU time is wasted for finding clusters for them.
Also, their presence in FC will slow down the alert
classification process. In order to address this problem, we use
the following OrderPatterns procedure for sorting the patterns
from FC:

1. patterns are sorted by the signature ID (in numeric
ascending order if IDs are numbers, otherwise in
alphabetic order),

2. patterns with the same signature ID are then sorted in
numeric ascending order by the number of elements,

3. patterns with the same number of elements are finally
sorted in alphabetic order of their string notations.

Since the OrderPatterns procedure defines a complete
order on FC, we can now assume that P1 < … < Pn, where
Pi � FC, 1 � i � n, n = |FC|. We then find clusters for patterns
from FC in this order, and alerts for pattern Pj will only be
clustered if there is no previously detected cluster C for pattern
Pi (i < j), so that C � Pj. If such C exists, alerts for Pj will not
be clustered but Pj is rather removed from FC. Since the
OrderPatterns procedure ensures that generic patterns with
lesser number of elements are processed before more specific
patterns for the same signature ID, this considerably increases
the likelihood that many specific patterns will be found
redundant and discarded. During our experiments, we have
observed a significant decrease in the number of patterns (e.g.,
for one IDS sensor the set FC originally contained 511-831
patterns during one month period, which were reduced to 19-23
patterns during daily rebuilds of the alert classifier).

Although the previous technique allows for much faster
building of alert classifiers, some clusters might not adequately
describe routine alerts. While a pattern P is included in FC only
if it is detected for many slices, clusters for P are mined from a
single alert set L(P). As a consequence, a short term flood of
atypical alerts that match P could create a cluster which
mistakenly labels uncommon alerts as “routine”. For tackling
this issue, we check for each cluster from CP how the alerts it
matches are distributed over time. Currently a simple procedure
called IsWellDistributed is used for this purpose which returns
FALSE if the cluster matches alerts for less than D days, and
TRUE otherwise (during our experiments, D has ranged
between 7…14). However, more complex methods can be
easily implemented within our framework.

Fig. 2 presents the BuildClassifier procedure for building
the alert classifier which employs all techniques described in
this section. In the next section, we will discuss our
experiments for evaluating the classifier performance.

IV. EXPERIMENT RESULTS
In order to evaluate the performance of the alert

classification method in a production environment, we have
implemented it for three IDS sensors of a large financial
institution (the sensors have been described in section IIIA).
The logs of three sensors are monitored in real time with
Simple Event Correlator (SEC) [18], and the alert classification
functionality has been implemented as a SEC Perl module.

Mar 16 19:20:43 2010 mysensor.mydomain snort[***]: [1:2002911:4]
ET SCAN Potential VNC Scan 5900-5920 [Classification: Attempted
Information Leak] [Priority: 2]: {TCP}
192.168.75.59:2700 -> 10.20.19.98:5900

Mar 18 20:44:04 2010 mysensor.mydomain snort[***]: [1:1156:10]
WEB-MISC apache directory disclosure attempt [Classification:
Attempted Denial of Service] [Priority: 2]: {TCP}
192.168.207.131:2579 -> 10.20.81.22:80

Mar 19 16:44:52 2010 mysensor.mydomain snort[***]: [1:2010920:2]
ET WEB_SERVER Exploit Suspected PHP Injection Attack (cmd=)
[Classification: Web Application Attack] [Priority: 1]: {TCP}
192.168.65.22:47551 -> 10.20.11.72:80

Mar 21 23:14:18 2010 mysensor.mydomain snort[***]: [1:2002:8]
WEB-PHP remote include path [Classification: Web Application
Attack] [Priority: 1]: {TCP} 192.168.78.178:54459 -> 10.20.24.7:80

Figure 3. Examples of interesting alerts.

TABLE II. PERFORMANCE OF IDS ALERT CLASSIFIERS

 Sensor1 Sensor2 Sensor3

Sensor location Internet Internet Intranet

Max. / min. / average
number of alerts per

day

379,981 /
25,649 /
168,008.85

57,217 /
2,524 /
11,610.58

393,884 /
75,417 /
232,327.75

Total number of alerts 9,408,496 650,193 13,010,354

Support threshold for
1-hour / 1-day slices 10 / 100 10 / 100 50 / 500

Max. / min. / average
number of patterns per

day

32 / 18 /
24.89

34 / 16 /
17.07

26 / 18 /
21.12

Max. / min. / average
number of alerts

classified as “routine”
per day

99.83% /
75.35% /
98.41%

97.05% /
43.31% /
90.72%

99.30% /
89.66% /
97.34%

Total number of alerts
classified as

“interesting”
126,335 69,557 314,135

If an alert is classified as “interesting”, it is written to a
separate log file which is regularly reviewed by security
analysts. Fig. 3 depicts examples of interesting alerts (the IP
addresses and other sensitive data have been obfuscated for the
reasons of privacy). The BuildClassifier procedures (see Fig. 2)
for all sensors have been implemented as UNIX cron jobs and
are invoked once in 24 hours, in order to rebuild the classifiers
on a daily basis and make them adaptable to environment
changes.

When choosing the input parameters for the BuildClassifier
procedure, we discovered that the classification framework
produces the best results when two classifiers are used
simultaneously for each sensor. For the first classifier, frequent
patterns are mined for the last 2 weeks log data which are
divided into 336 1-hour slices, while for the second classifier,
frequent patterns are mined for the last 30 days log data which
are divided into 30 24-hour slices. An IDS alert A is classified
as “interesting” if both classifiers return 1 for A, otherwise A is
classified as “routine”. We have discovered that the first
classifier facilitates fast learning of strong new routine alert
patterns, while the second classifier helps to correctly identify

routine alerts (such as various port scans) which often don’t
appear as patterns in 1-hour time frames [2]. For both
classifiers, the pattern relevance threshold K has been set to
50% of the number of slices (i.e., to 168 and 15, respectively),
the clustering threshold sequence seq has been set to 10%...1%,
while clustering parameters pct and M have been set to 5 and
30 (see Fig. 2). As for the support threshold s, we finally settled
for values which usually produce 15-30 classification patterns
for each sensor, so that the human analyst can easily grasp the
patterns and follow the classification process. Table II presents
the results of our experiments for the 8 week period.

During 8 weeks, the amount of routine alerts for Sensor 2
was unexpectedly small for three days, with only 43.31% of
alerts classified as “routine” in the worst case. When we
investigated this issue, we discovered that this was caused by
the flaw introduced to a vendor signature [19] which affected
several sites and triggered 29,189 false positive alerts in our
environment. Since the signature had not produced any alerts in
the past, the false positives were classified as “interesting”.
Without these alerts taken into account, we found that the
performance of our method is comparable to the performance
of other recently proposed data mining approaches (their
authors have reported the reduction of alerts by 74-93%, see
section II for details).

In order to evaluate how well does our classification
method recognize alerts that require attention from the security
personnel, we define precision and recall in the following way.
If TP is the set of alerts that are correctly classified as
“interesting”, FP is the set of alerts that are incorrectly
classified as “interesting”, and FN is the set of alerts incorrectly
classified as “routine”, then precision is defined as
|TP| / (|TP|+|FP|) and recall is defined as |TP| / (|TP|+|FN|). For
estimating recall and precision, we extracted 274,354
penetration test alerts (produced in December 2008 by 660
signatures) and 495,670 known irrelevant alerts (triggered
between December 2008 and March 2010 by 43 signatures)
from one sensor log and replayed them to the classifier of the
same sensor. From 282,682 alerts classified as “interesting”,
8,411 were irrelevant alerts, yielding the precision of 97.02%.
Only 83 penetration test alerts from 274,354 were incorrectly
classified as “routine”, yielding the recall of 99.96%.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel unsupervised IDS
alert classification method which is based on data mining
techniques. Our experiments suggest that the method works
well in a production environment and significantly reduces the
workload of the security personnel.

We have also experimented with extending the alert notion
to include source and destination country information, obtained
via GeoIPWhois database. This allowed for the detection of
some more specific patterns (for some signature IDs we noticed
that traffic is often coming from a specific country), but they
did not change the classification results significantly.
Nevertheless, we feel that this research idea deserves further
study. As discussed in [1, 2, 11, 12], major changes in the
arrival rates of routine alerts might be of interest to the security
personnel, but unfortunately it is impossible to detect these

changes with our method. For this reason, we also plan to
research the applicability of various statistical methods for IDS
alert processing, in order to detect unexpected floods of routine
alerts.

ACKNOWLEDGMENT

The authors express their gratitude to Mr. Kaido Raiend,
Dr. Paul Leis, Mr. Ants Leitmäe, and Mr. Ain Rasva from SEB
Estonia for supporting this work.

REFERENCES
[1] J. Viinikka, H. Debar, L. Mé, A. Lehikoinen, and M. Tarvainen,

“Processing intrusion detection alert aggregates with time series
modeling,” Information Fusion Journal, vol. 10(4), 2009, pp. 312-324.

[2] R. Vaarandi, “Real-Time Classification of IDS Alerts with Data Mining
Techniques,” in Proc. of 2009 MILCOM Conference, 7 pp.

[3] K. Julisch, “Mining Alarm Clusters to Improve Alarm Handling
Efficiency,” in Proc. of 2001 Annual Computer Security Applications
Conference, pp. 12-21.

[4] K. Julisch and M. Dacier, “Mining intrusion detection alarms for
actionable knowledge,” in Proc. of 2002 ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 366-375.

[5] K. Julisch, “Clustering Intrusion Detection Alarms to Support Root
Cause Analysis,” ACM Transactions on Information and System
Security, vol. 6(4), 2003, pp. 443-471.

[6] J. J. Treinen and R. Thurimella, “A Framework for the Application of
Association Rule Mining in Large Intrusion Detection Infrastructures,”
in Proc. of 2006 RAID Symposium, pp. 1-18.

[7] J. Long, D. Schwartz, and S. Stoecklin, “Distinguishing False from True
Alerts in Snort by Data Mining Patterns of Alerts,” in Proc. of 2006
SPIE Defense and Security Symposium, pp. 62410B-1--62410B-10.

[8] C. Clifton and G. Gengo, “Developing Custom Intrusion Detection
Filters Using Data Mining,” in Proc. of 2000 MILCOM Symposium, pp.
440-443.

[9] S. O. Al-Mamory, H. Zhang, and A. R. Abbas, “IDS Alarms Reduction
Using Data Mining,” in Proc. of 2008 IEEE World Congress on
Computational Intelligence, pp. 3564-3570.

[10] S. O. Al-Mamory and H. Zhang, “Intrusion Detection Alarms Reduction
Using Root Cause Analysis and Clustering,” Computer
Communications, vol. 32(2), 2009, pp. 419-430.

[11] J. Viinikka and H. Debar, “Monitoring IDS Background Noise Using
EWMA Control Charts and Alert Information,” in Proc. of 2004 RAID
Symposium, pp. 166-187.

[12] J. Viinikka, H. Debar, L. Mé, and R. Séguier, “Time Series Modeling for
IDS Alert Management,” in Proc. of 2006 ACM Symposium on
Information, Computer and Communications Security, pp. 102-113.

[13] T. Pietraszek, “Using Adaptive Alert Classification to Reduce False
Positives in Intrusion Detection,” in Proc. of 2004 RAID Symposium, pp.
102-124.

[14] B. Morin and H. Debar, “Correlation of Intrusion Symptoms: an
Application of Chronicles,” in Proc. of 2003 RAID Symposium, pp. 94-
112.

[15] P. Ning, Y. Cui, and D. S. Reeves, “Analyzing Intensive Intrusion Alerts
via Correlation,” in Proc. of 2002 RAID Symposium, pp. 74-94.

[16] R. Vaarandi, “A Breadth-First Algorithm for Mining Frequent Patterns
from Event Logs,” in Proc. of 2004 IFIP International Conference on
Intelligence in Communication Systems, pp. 293-308.

[17] R. Vaarandi, “A Data Clustering Algorithm for Mining Patterns From
Event Logs,” in Proc. of 2003 IEEE Workshop on IP Operations and
Management, pp. 119-126.

[18] R. Vaarandi, “Simple Event Correlator for real-time security log
monitoring,” Hakin9 Magazine, vol. 1/2006 (6), 2006, pp. 28-39.

[19] http://seclists.org/snort/2010/q1/481

