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Abstract—Network IDS is a well-known security measure for 
network monitoring and protection. Unfortunately, IDSs are 
known to generate large amounts of alerts, with many of them 
being either false positives or of low importance. This makes it 
hard for the human to spot alerts which need more attention. In 
order to tackle this issue, this paper proposes an IDS alert 
classification method which is based on data mining techniques.  
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I.  INTRODUCTION 

Network IDS (intrusion detection system) is a well-known 
security measure for network monitoring and protection. 
Network IDS monitors network segments for malicious or 
other unwanted traffic and produces alerts when such traffic is 
observed. Many network IDSs use the signature based 
approach for detecting unwanted traffic – IDS sensors are 
equipped with human written rules (signatures) which describe 
bad network packets. Despite IDS solutions have been used for 
more than a decade, an important problem is still not fully 
addressed – IDS can produce a large number of alerts which 
are overwhelming to the human. For example, a single IDS 
sensor can generate tens of thousands of alerts in a day [1, 2]. 
Furthermore, often vast majority of the alerts are false positives 
or of low importance [2–7].  

For these reasons, IDS alert processing techniques have 
been extensively researched [1–15]. Among proposed methods, 
data mining based approaches have been frequently suggested 
during the past decade [2–10]. With these approaches, IDS 
alert logs from the recent past are mined for previously 
unknown regularities and irregularities, and the detected 
knowledge is then used by the human for developing alert 
correlation rules (such as filters for false positives). 
Unfortunately, this inherently semi-automated procedure is 
expensive, since the domain expert has to interpret the 
knowledge and write correlation rules by hand. Moreover, 
since most IT environments are constantly changing, this 
procedure has to be carried out regularly which further 
increases its cost [2, 5]. 

In this paper, we extend our previous work on IDS alert 
classification [2], and present a novel unsupervised real time 
alert classification method which is based on frequent itemset 
mining and data clustering techniques. Unlike other data 
mining based approaches, our method fully automates the 
process of knowledge interpretation and construction of alert 

filtering rules. Furthermore, due to its unsupervised and 
automated nature, the method does not need human-labeled 
training data and is able to adjust to environment changes 
without a human intervention.  

The remainder of this paper is organized as follows – 
section II presents an overview of related work, section III 
provides an in-depth discussion of our alert classification 
method, section IV describes experiments for evaluating the 
performance of the method, and section V concludes the paper. 

II. RELATED WORK 

During the last decade, IDS alert processing techniques 
have received considerable amount of attention in the research 
community. Pietraszek has proposed machine learning methods 
for IDS alert classification, in order to reduce the amount of 
false positives [13]. Viinikka et al. have suggested the use of 
time series modeling for modeling regularities in large alert 
volumes [1, 12]. Other proposed methods include the 
application of EWMA control charts for monitoring IDS alerts 
produced by verbose signatures [11], the application of the 
chronicles formalism for temporal alert correlation [14], and 
graph-based correlation methods [15]. For IDS alert log 
mining, a number of approaches have been proposed. Treinen 
and Thurimella have investigated the application of association 
rule mining for the detection of rules for novel attack types [6]. 
Clifton and Gengo have used a similar approach for building 
IDS alert filters [8]. Long, Schwartz and Stoecklin have 
suggested a supervised clustering algorithm for distinguishing 
Snort IDS true alerts from false positives [7]. Julisch and 
Dacier have proposed a conceptual clustering technique for 
IDS alert logs [3–5]. With this approach, detected clusters 
correspond to alert descriptions, and the human expert can use 
them for developing filtering and correlation rules for future 
IDS alerts. During their experiments, Julisch and Dacier found 
that these hand written rules reduced the number of alerts by an 
average of 75% [4] and 87% [5]. Al-Mamory, Zhang and 
Abbas have suggested clustering algorithms for finding 
generalized alarms which help the human analyst to write 
filters [9, 10]. During the experiments, the number of alarms 
decreased by 93% [9] and 74% [10]. 

In our recent paper [2], we have proposed an IDS alert 
classification algorithm which distinguishes important alerts 
from redundant ones. Our algorithm first employs frequent 
itemset mining for detecting patterns that describe frequently 
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occurring redundant alerts. The algorithm then extracts 
signature IDs from detected patterns and finds frequent 
endpoint sets which describe strong associations between alert 
attribute values for each ID. Detected sets will be used for 
restricting the matches produced by too generic patterns. 
Although this heuristic was found to be efficient [2], frequent 
endpoint sets don’t capture all strong associations between alert 
attribute values. For instance, the heuristic makes an 
assumption that all associations for a given signature ID are of 
the same type (e.g., between values of transport protocol and 
destination port attributes), while this is not always the case. In 
the following section, we will describe a new classification 
method which addresses this issue. 

III. IDS ALERT CLASSIFICATION 

In this section, we propose an IDS alert classification 
method which relies on frequent itemset mining and data 
clustering algorithms. Our method first applies a frequent 
itemset mining algorithm to past IDS alert logs, in order to 
discover patterns that describe redundant alerts. After that, data 
clustering techniques are used for finding fine-grained 
subpatterns for each detected pattern. Finally, the detected 
knowledge is interpreted and employed for real time 
classification of IDS alerts, in order to distinguish important 
alerts from irrelevant ones. The mining and interpretation steps 
are periodically repeated for keeping the classification 
knowledge up-to-date, thus the method is able to adjust to 
environment changes without a human intervention. 

A. Properties of IDS Alert Log Data 
Before providing a detailed description of our classification 

method, we will discuss special properties of IDS alert log data 
which the method relies on. We have observed these properties 
when analyzing the logs of three Snort IDS sensors of a large 
financial institution. Two sensors are deployed in the external 
network perimeter and one sensor in the intranet; all sensors are 
equipped with more than 15,000 signatures. The logs for three 
sensors covered a time frame of one year, and contained 
55,484,833 alerts, 2,444,414 alerts, and 57,303,494 alerts, 
respectively. 

First, we discovered that only a few signatures trigger most 
of the alerts – for three sensors described above, 10 most 
prolific signatures triggered 97.54%, 81.81%, and 95.53% of 
all alerts, respectively. During our past research, we have 
observed the same property [2], and experiments by other 
researchers have yielded similar results [1, 12]. Second, we 
discovered that prolific signatures have a tendency to trigger 
alerts over longer periods of time. For example, when we 
inspected 10 most prolific signatures for the three 
aforementioned IDS sensors, we found that for the first sensor, 
9 signatures produced alerts for more than 170 days and 6 for 
more than 360 days. For the second sensor, 8 signatures 
produced alerts for more than 258 days and 7 for more than 
344 days. For the third sensor, all 10 signatures produced alerts 
for more than 164 days and 6 for more than 351 days. 

Third, when we inspected the signatures that trigger alerts 
frequently over long periods of time, we discovered that the 
number of such signatures is relatively small, yet they produce 

most of the alerts, with vast majority of them being either false 
positives or alerts of low importance. During one experiment, 
we divided the IDS logs into 365 slices, with each slice 
covering one day. We found that for the three IDS sensors 
described above, only 25, 17, and 20 signatures triggered alerts 
for at least 300 days, respectively. However, these signatures 
produced 90.94%, 79.68%, and 70.14% of all alerts, 
respectively, with the majority of them being irrelevant. Similar 
property has been observed by other researchers [1]. Table I 
lists data for top 5 signatures for one Internet and one intranet 
IDS sensor. The signatures from Table I trigger alerts which 
represent either well-known threats of low importance or false 
positives in the local environment. One of the well-known 
threats is the MS Slammer Sapphire worm which is detected by 
signatures 1:2003 and 1:2050. Other threats of low importance 
are very frequently occurring ping scans which are detected by 
signatures 1:483 and 1:469. As for false positive alerts, they are 
generated for routine network management traffic (signatures 
1:2006779, 1:1419 and 1:480), for legitimate workstation 
traffic (signature 1:466), and for normal SSL and SSH traffic 
(signatures 1:8428 and 1:2001980). In the rest of this paper, we 
call such frequently occurring redundant alerts routine alerts. 

Given the properties of IDS alert log data, it is obvious that 
IDS alert logs contain strong patterns in many environments, 
and these patterns often correspond to routine alerts. Therefore, 
the mining of frequent patterns from IDS alert logs yields 
valuable knowledge for alert classification. Since the output 
from different IDS sensors varies even within the same 
organization and is highly dependent on the sensor location, it 
often makes sense to mine patterns from each sensor log 
separately. For the sake of simplicity, we assume in the 
remainder of the paper that the IDS alert log is produced by a 
single sensor. 

TABLE I.  SIGNATURES THAT TRIGGER REDUNDANT ALERTS 
FREQUENTLY 

Sensor 
location 

Signature 
ID 

Signature 
description 

# of 
days # of alerts 

Internet 1:483 
ICMP Ping 
Cyberkit 2.2 
Windows 

361 46,967,725 

Internet 1:469 ICMP Ping Nmap 362 750,748 

Internet 1:2050 SQL version 
overflow attempt 365 465,087 

Internet 1:2003 
SQL Worm 
propagation 
attempt 

365 465,086 

Internet 1:2006779 
Nagios HTTP 
Monitoring 
Connection 

365 288,520 

Intranet 1:466 ICMP L3retreiver 
Ping 365 19,318,057 

Intranet 1:1419 SNMP trap udp 365 14,922,302 

Intranet 1:2001980 
SSH Client 
Banner Detected 
on Unusual Port 

359 1,909,080 

Intranet 1:480 ICMP ping 
speedera 352 1,332,600 

Intranet 1:8428 
SSLv2 openssl get 
shared ciphers 
overflow attempt 

354 729,523 



B. Frequent Itemset Mining for IDS Alert Logs 
We model the IDS alert log L as a finite sequence of alerts 

L = (A1, …, Am), and assume that each alert has attributes no, 
time, ID, proto, srcIP, srcPort, destIP, and destPort. If � is an 
attribute and A is an alert, A� denotes the value of attribute � 
for alert A. If A is the k-th alert from L (i.e., A = Ak), we view it 
as a tuple A = (Ano, Atime, AID, Aproto, AsrcIP, AsrcPort, AdestIP, 
AdestPort), where Ano equals to k (1 � Ano � m), Atime is the 
occurrence time of A, AID is the ID of the signature that 
produced A, Aproto is the network protocol for the traffic which 
triggered A, while AsrcIP, AsrcPort, AdestIP, and AdestPort are the 
source IP address, source port, destination IP address, and 
destination port for the traffic which triggered A (if the network 
protocol does not involve ports, AsrcPort and AdestPort equal to the 
constant ‘-‘). 

Let I = {i1,...,in} be a set of items. If X � I, X is called an 
itemset. A transaction is a tuple (tid, X), where tid is a 
transaction identifier and X is an itemset. A transaction 
database D is a set of transactions, and the support of an 
itemset X is the number of transactions that contain X: 
supp(X) = |{tid | (tid, Y) � D, X � Y}|. If s is a support 
threshold and supp(X) � s, X is called a frequent itemset. If 
itemset X does not have any proper supersets with the same 
support, X is called a closed itemset. If D is a transaction 
database and s is a support threshold, Fclosed(D, s) denotes the 
set of all closed frequent itemsets for D and s. Note that the 
support threshold is often specified as a percentage p% which 
means that s = |D|*p/100.  

During our past research, we have developed a tool called 
LogHound which implements an efficient frequent itemset 
mining algorithm for finding patterns from log files [16]. In 
order to apply LogHound to IDS alert log L, we have 
configured it to view each alert A from L as a transaction 
(Ano, X), where X = {(AID,1), (Aproto,2), (AsrcIP,3), (AsrcPort,4), 
(AdestIP,5), (AdestPort,6)}. If L is viewed as a transaction database 
D(L) in such a way, frequent closed itemsets from D(L) 
correspond to IDS alert patterns. For example, the itemset 
{(1:2003,1), (UDP,2), (1434,6)} indicates that the MS Slammer 
Sapphire worm (detected by the signature 1:2003) frequently 
hits the destination port 1434/udp. Note that this alert pattern 
can be also written as a string 1:2003 UDP * * * 1434. In the 
remainder of this paper, we will often use this string notation 
for itemsets, and we will also use the terms pattern and itemset 
interchangeably. 

If A = (Ano, Atime, AID, Aproto, AsrcIP, AsrcPort, AdestIP, AdestPort) is 
an alert and P is a pattern, we say that A matches P if P � 
{(AID,1), (Aproto,2), (AsrcIP,3), (AsrcPort,4), (AdestIP,5), (AdestPort,6)}. 
If � is the set of all valid alerts that the IDS sensor can 
produce, the alert classifier is a function f: � � {0, 1}, where 
the function value 1 denotes “interesting” and 0 “routine”. 

The alert classifier could be defined in a trivial way – an 
alert is considered routine if some frequent closed pattern 
matches it, otherwise it is considered interesting. While 
building such a classifier is straightforward, it has several 
drawbacks. First, unusual and intensive short-term malicious 
network activity might trigger many uncommon alerts. If the 
number of such alerts is sufficiently large, patterns that reflect 

them would be detected as frequent, even if the alerts appear 
only in a small time frame of the log. Therefore, the classifier 
would mistakenly consider similar future alerts as routine. 
Second, IDS log mining often involves the over-generalization 
problem – some detected patterns could be too generic for alert 
classification [2, 4]. For example, the pattern * TCP * * 
10.2.1.17 25 would mistakenly label uncommon alerts from 
non-verbose signatures as “routine”. 

In order to address the first issue and handle the bursts of 
uncommon alerts, we split the IDS alert log into smaller slices, 
where each slice covers a time frame of equal length. Formally, 
if L is an IDS alert log, t is time, and d is a time interval, the log 
slice Lt,d is defined as follows: Lt,d = {A | A � L, 
t � Atime < t + d}. We then mine patterns from each slice, and a 
pattern will be used for classification only if it is discovered in 
many slices. The set of patterns selected for alert classification 
is denoted by FC. Since only a few slices contain patterns for 
uncommon alerts, such patterns will be excluded from FC (see 
Fig. 2 for details). Please see our previous paper [2] for a more 
thorough discussion of this technique. 

C. Data Clustering for Pattern Refinement 
As mentioned in the previous subsection, some frequent 

patterns are too generic for IDS alert classification. For 
example, suppose that only two Nagios network management 
servers 10.6.1.1 and 10.23.5.7 can issue legitimate monitoring 
queries to the web server 10.1.1.1, and that corresponding 
frequent patterns 1:2006779 TCP 10.6.1.1 * 10.1.1.1 80 and 
1:2006779 TCP 10.23.5.7 * 10.1.1.1 80 are detected for all log 
slices. In that case, however, an overly generic pattern 
1:2006779 TCP * * 10.1.1.1 80 will also be found frequent for 
all slices, since its support can’t be smaller than the supports of 
two previous patterns. 

For handling the over-generalization problem, we first 
exclude patterns without the signature ID information (e.g., the 
pattern * TCP * * 10.1.1.1 80) from further analysis and 
remove them from the set FC. We will then analyze each 
remaining pattern in FC, in order to find if the majority of alerts 
from L that match the pattern can be described with a moderate 
number of more specific subpatterns. If such subpatterns exist, 
they are used for improving the quality of alert classification – 
apart from matching a pattern P from FC, an alert must also 
match one of the subpatterns of P, in order to be classified as 
“routine”. 

For the subpattern discovery, we are using the SLCT data 
clustering tool that has been developed previously by us for 
efficient analysis of large log files [17]. SLCT favors specific 
patterns over generic ones and thus suits well for the given 
task. SLCT divides log file entries into clusters, where entries 
from one cluster are similar to each other and are described 
with a certain pattern. Entries that don’t fit to any of the 
detected clusters are arranged to a special cluster of outliers. 
When processing the log file, SLCT splits each entry into 
tokens. If the entry is a sequence of n tokens w1 w2 … wn, 
SLCT considers the entry as a set of words: {(w1,1),…,(wn,n)} 
(i.e., each word is a token-position pair). In order to cluster the 
log file, SLCT first finds frequent words that occur at least c 
times in the data set, where c is the user given clustering 



threshold. SLCT will then make a second pass over the data 
set, in order to create cluster candidates – for each log file 
entry, all frequent words are extracted from it and the set of 
frequent words becomes a cluster candidate (i.e., if the entry 
contains m frequent words (v1,p1),…,(vm,pm), the candidate is 
{(v1,p1),…,(vm,pm)}). For each candidate, SLCT maintains an 
occurrence counter, and after the data pass the candidates that 
have occurred at least c times will be selected as clusters. 

We have configured SLCT to view each alert A as a set of 
six words {(AID,1), (Aproto,2), (AsrcIP,3), (AsrcPort,4), (AdestIP,5), 
(AdestPort,6)}. It is easy to see that with this approach, each 
detected cluster has the same structure as an alert pattern, and 
thus we can define alert A matches cluster C in the following 
way: C � {(AID,1), (Aproto,2), (AsrcIP,3), (AsrcPort,4), (AdestIP,5), 
(AdestPort,6)}. Note that if alerts that match a pattern P are 
clustered, then P � C for each detected cluster C, since 
elements of P become words that are part of every alert. In 
other words, every alert that matches C must also match P, and 
therefore C acts as a more specific subpattern for P that 
improves the quality of alert classification. 

When using SLCT for clustering alerts that match frequent 
patterns from FC, the patterns themselves and the amount of 
matching alerts from L could vary a lot. Therefore, it is often 
impossible to find a common clustering threshold suitable for 
all patterns. In order to address this problem, SLCT is applied 
to each set of alerts several times with different thresholds, and 
after each clustering round the results are evaluated. After all 
rounds, the threshold which yields the best results is selected 
for clustering. We denote by L(P) the set of alerts from L which 
match the pattern P from FC, while by CP we denote the best 
set of clusters for P. In order to evaluate the clustering results 
for L(P), we define GL(P),c for a given L(P) and threshold c as 
follows: GL(P),c = minC’�CAL(P),c|C’|, where CAL(P),c is the set of 
all clusters for L(P) and threshold c. Intuitively, larger values of 
GL(P),c indicate that detected clusters are more specific, since all 
clusters contain at least GL(P),c elements. We also denote the 
cluster of outliers for L(P) and c by OL(P),c, and find clusters for 
P with the FindBestClustering procedure from Fig. 1 (during 
our experiments, typical values for M and pct have ranged 
between 20...30 and 1...5, respectively). Informally, the 
procedure seeks for the threshold which produces a moderate 
number of clusters that cover the majority of alerts and are as 
specific as possible. If no such threshold is found, CP is set to 
{ P } which means that CP will not restrict the matches 
produced by the pattern P (because for every alert that matches 
P there is always a matching cluster in CP). 

In order to address the over-generalization problem, the set 
CP is detected for each pattern P from FC. Unfortunately, 
although only a few signatures trigger routine alerts which 
create frequent patterns in logs, the set FC could nevertheless 
become quite large if lower support thresholds are used during 
frequent itemset mining. In that case, there are often only a few 
fairly generic patterns X1,…,Xk present in FC with many 
specific patterns Y1,…,Ym, so that each Yj is a superset of some 
cluster C for a certain Xi: �Xi � FC �C � CXi, C � Yj. However, 
since Xi � C, then every alert A that matches Yj (i.e., Yj � 
{(AID,1), (Aproto,2), (AsrcIP,3), (AsrcPort,4), (AdestIP,5), (AdestPort,6)}) 
must also match both Xi and C, and is thus classified as 

“routine” regardless of Yj. Therefore, the pattern Yj is redundant 
and can be excluded from FC.  

 
Procedure FindBestClustering 
 
Input: 
P – pattern for which clusters are found 
L(P) – set of IDS alerts which is clustered 
seq = (c1, ..., cr) – sequence of clustering thresholds 
pct – max percentage of alerts in the cluster of outliers 
M – max number of clusters 
 
Output: set of clusters CP  
 
G := 0 
c := -1 
for each i := c1...cr  do 
  if (|OL(P),i| / |L(P)| � pct/100  AND  |CAL(P),i| � M  AND  GL(P),i � G)  
  then 
    G := GL(P),i 
    c := i 
  fi 
done 
if (c = -1) then  CP := { P }  else  CP := CAL(P),c  fi 
return CP  

Figure 1.  The procedure for finding the best set of clusters for a pattern. 

 
Procedure BuildClassifier 
 
Input: 
L – IDS alert log 
ts – beginning of the time window for mining 
te – end of the time window for mining 
s – support threshold 
N – number of slices 
K – pattern relevance threshold (1 � K � N) 
seq – sequence of clustering thresholds 
pct – max percentage of alerts in the cluster of outliers 
M – max number of clusters 
 
Output: definition of the alert classifier f: � � {0, 1} 
 
d := (te – ts) / N 
for each i = 1…N  do  Fi := Fclosed(D(Lts+(i-1)*d,d), s)  done 
F := F1 � … � FN 

for each P in F  do  kP := |{Fj | 1 � j � N, P � Fj}|  done 
FC := {P | P � F, kP � K} 
FwithoutID := {P | P � FC, ��id, (id,1) � P} 
FC := FC \ FwithoutID 
OrderPatterns(FC) 
n := |FC| 
Fredundant := � 
for each j = 1…n, Pj in FC  do 
  if (��i, i < j, C � Pj, C � CPi) then 
    L(Pj) := {A | A � Lts,te-ts , A matches Pj} 
    CPj := FindBestClustering(Pj, L(Pj), seq, pct, M) 
    CnotWellDistr := {C | C � CPj , IsWellDistributed(C) = FALSE} 
    CPj := CPj \ CnotWellDistr 
  else 
    Fredundant := Fredundant � {Pj} 
  fi 
done 
FC := FC \ Fredundant 
return the following definition for the alert classifier: 
    f(A) = 0, if �P � FC  �C � CP, A matches P  AND  A matches C; 
 1, otherwise  

Figure 2.  The procedure for building the alert classifier. 



If there are many such redundant patterns, substantial 
amount of CPU time is wasted for finding clusters for them. 
Also, their presence in FC will slow down the alert 
classification process. In order to address this problem, we use 
the following OrderPatterns procedure for sorting the patterns 
from FC: 

1. patterns are sorted by the signature ID (in numeric 
ascending order if IDs are numbers, otherwise in 
alphabetic order), 

2. patterns with the same signature ID are then sorted in 
numeric ascending order by the number of elements, 

3. patterns with the same number of elements are finally 
sorted in alphabetic order of their string notations. 

Since the OrderPatterns procedure defines a complete 
order on FC, we can now assume that P1 < … < Pn, where 
Pi � FC, 1 � i � n, n = |FC|. We then find clusters for patterns 
from FC in this order, and alerts for pattern Pj will only be 
clustered if there is no previously detected cluster C for pattern 
Pi (i < j), so that C � Pj. If such C exists, alerts for Pj will not 
be clustered but Pj is rather removed from FC. Since the 
OrderPatterns procedure ensures that generic patterns with 
lesser number of elements are processed before more specific 
patterns for the same signature ID, this considerably increases 
the likelihood that many specific patterns will be found 
redundant and discarded. During our experiments, we have 
observed a significant decrease in the number of patterns (e.g., 
for one IDS sensor the set FC originally contained 511-831 
patterns during one month period, which were reduced to 19-23 
patterns during daily rebuilds of the alert classifier). 

Although the previous technique allows for much faster 
building of alert classifiers, some clusters might not adequately 
describe routine alerts. While a pattern P is included in FC only 
if it is detected for many slices, clusters for P are mined from a 
single alert set L(P). As a consequence, a short term flood of 
atypical alerts that match P could create a cluster which 
mistakenly labels uncommon alerts as “routine”. For tackling 
this issue, we check for each cluster from CP how the alerts it 
matches are distributed over time. Currently a simple procedure 
called IsWellDistributed is used for this purpose which returns 
FALSE if the cluster matches alerts for less than D days, and 
TRUE otherwise (during our experiments, D has ranged 
between 7…14). However, more complex methods can be 
easily implemented within our framework. 

Fig. 2 presents the BuildClassifier procedure for building 
the alert classifier which employs all techniques described in 
this section. In the next section, we will discuss our 
experiments for evaluating the classifier performance. 

IV. EXPERIMENT RESULTS 
In order to evaluate the performance of the alert 

classification method in a production environment, we have 
implemented it for three IDS sensors of a large financial 
institution (the sensors have been described in section IIIA). 
The logs of three sensors are monitored in real time with 
Simple Event Correlator (SEC) [18], and the alert classification 
functionality has been implemented as a SEC Perl module.  

Mar 16 19:20:43 2010 mysensor.mydomain snort[***]: [1:2002911:4] 
ET SCAN Potential VNC Scan 5900-5920 [Classification: Attempted  
Information Leak] [Priority: 2]: {TCP}  
192.168.75.59:2700 -> 10.20.19.98:5900 
 
Mar 18 20:44:04 2010 mysensor.mydomain snort[***]: [1:1156:10] 
WEB-MISC apache directory disclosure attempt [Classification:  
Attempted Denial of Service] [Priority: 2]: {TCP}  
192.168.207.131:2579 -> 10.20.81.22:80 
 
Mar 19 16:44:52 2010 mysensor.mydomain snort[***]: [1:2010920:2] 
ET WEB_SERVER Exploit Suspected PHP Injection Attack (cmd=)  
[Classification: Web Application Attack] [Priority: 1]: {TCP}  
192.168.65.22:47551 -> 10.20.11.72:80 
 
Mar 21 23:14:18 2010 mysensor.mydomain snort[***]: [1:2002:8] 
WEB-PHP remote include path [Classification: Web Application  
Attack] [Priority: 1]: {TCP} 192.168.78.178:54459 -> 10.20.24.7:80  

Figure 3.  Examples of interesting alerts. 

TABLE II.  PERFORMANCE OF IDS ALERT CLASSIFIERS 

 Sensor1 Sensor2 Sensor3 

Sensor location Internet Internet Intranet 

Max. / min. / average 
number of alerts per 

day 

379,981 / 
25,649 / 
168,008.85 

57,217 / 
2,524 / 
11,610.58 

393,884 / 
75,417 / 
232,327.75 

Total number of alerts 9,408,496 650,193 13,010,354 

Support threshold for 
1-hour / 1-day slices 10 / 100 10 / 100 50 / 500 

Max. / min. / average 
number of patterns per 

day 

32 / 18 / 
24.89 

34 / 16 / 
17.07 

26 / 18 / 
21.12 

Max. / min. / average 
number of alerts 

classified as “routine” 
per day 

99.83% / 
75.35% / 
98.41% 

97.05% / 
43.31% / 
90.72% 

99.30% / 
89.66% / 
97.34% 

Total number of alerts 
classified as 

“interesting” 
126,335 69,557 314,135 

 

If an alert is classified as “interesting”, it is written to a 
separate log file which is regularly reviewed by security 
analysts. Fig. 3 depicts examples of interesting alerts (the IP 
addresses and other sensitive data have been obfuscated for the 
reasons of privacy). The BuildClassifier procedures (see Fig. 2) 
for all sensors have been implemented as UNIX cron jobs and 
are invoked once in 24 hours, in order to rebuild the classifiers 
on a daily basis and make them adaptable to environment 
changes. 

When choosing the input parameters for the BuildClassifier 
procedure, we discovered that the classification framework 
produces the best results when two classifiers are used 
simultaneously for each sensor. For the first classifier, frequent 
patterns are mined for the last 2 weeks log data which are 
divided into 336 1-hour slices, while for the second classifier, 
frequent patterns are mined for the last 30 days log data which 
are divided into 30 24-hour slices. An IDS alert A is classified 
as “interesting” if both classifiers return 1 for A, otherwise A is 
classified as “routine”. We have discovered that the first 
classifier facilitates fast learning of strong new routine alert 
patterns, while the second classifier helps to correctly identify 



routine alerts (such as various port scans) which often don’t 
appear as patterns in 1-hour time frames [2]. For both 
classifiers, the pattern relevance threshold K has been set to 
50% of the number of slices (i.e., to 168 and 15, respectively), 
the clustering threshold sequence seq has been set to 10%...1%, 
while clustering parameters pct and M have been set to 5 and 
30 (see Fig. 2). As for the support threshold s, we finally settled 
for values which usually produce 15-30 classification patterns 
for each sensor, so that the human analyst can easily grasp the 
patterns and follow the classification process. Table II presents 
the results of our experiments for the 8 week period. 

During 8 weeks, the amount of routine alerts for Sensor 2 
was unexpectedly small for three days, with only 43.31% of 
alerts classified as “routine” in the worst case. When we 
investigated this issue, we discovered that this was caused by 
the flaw introduced to a vendor signature [19] which affected 
several sites and triggered 29,189 false positive alerts in our 
environment. Since the signature had not produced any alerts in 
the past, the false positives were classified as “interesting”. 
Without these alerts taken into account, we found that the 
performance of our method is comparable to the performance 
of other recently proposed data mining approaches (their 
authors have reported the reduction of alerts by 74-93%, see 
section II for details). 

In order to evaluate how well does our classification 
method recognize alerts that require attention from the security 
personnel, we define precision and recall in the following way. 
If TP is the set of alerts that are correctly classified as 
“interesting”, FP is the set of alerts that are incorrectly 
classified as “interesting”, and FN is the set of alerts incorrectly 
classified as “routine”, then precision is defined as 
|TP| / (|TP|+|FP|) and recall is defined as |TP| / (|TP|+|FN|). For 
estimating recall and precision, we extracted 274,354 
penetration test alerts (produced in December 2008 by 660 
signatures) and 495,670 known irrelevant alerts (triggered 
between December 2008 and March 2010 by 43 signatures) 
from one sensor log and replayed them to the classifier of the 
same sensor. From 282,682 alerts classified as “interesting”, 
8,411 were irrelevant alerts, yielding the precision of 97.02%. 
Only 83 penetration test alerts from 274,354 were incorrectly 
classified as “routine”, yielding the recall of 99.96%. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a novel unsupervised IDS 
alert classification method which is based on data mining 
techniques. Our experiments suggest that the method works 
well in a production environment and significantly reduces the 
workload of the security personnel. 

We have also experimented with extending the alert notion 
to include source and destination country information, obtained 
via GeoIPWhois database. This allowed for the detection of 
some more specific patterns (for some signature IDs we noticed 
that traffic is often coming from a specific country), but they 
did not change the classification results significantly. 
Nevertheless, we feel that this research idea deserves further 
study. As discussed in [1, 2, 11, 12], major changes in the 
arrival rates of routine alerts might be of interest to the security 
personnel, but unfortunately it is impossible to detect these 

changes with our method. For this reason, we also plan to 
research the applicability of various statistical methods for IDS 
alert processing, in order to detect unexpected floods of routine 
alerts. 
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