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Abstract—During the last decade, network monitoring and 

intrusion detection have become essential techniques of cyber 

security. Nowadays, many institutions are using advanced 

solutions for detecting malicious network traffic, discovering 

network anomalies, and preventing cyber attacks. However, most 

research in this area has not been conducted specifically for 

organizational private networks, and their special properties have 

not been considered. In this paper, we first present a study of 

traffic patterns in a corporate private network, and then propose 

two novel algorithms for detecting anomalous network traffic and 

node behavior in such networks.  

 
Index Terms—cyber security, network anomaly detection, 

network monitoring, network forensics 

 

 

I. INTRODUCTION 

URING the last decade, network monitoring and intrusion 

detection have become essential techniques of cyber 

security. A number of vendors are offering advanced solutions 

for intrusion detection and prevention, for network anomaly 

detection, for network alarm correlation, and for other security 

monitoring purposes. Many larger institutions are using a 

dedicated intrusion detection system (IDS) for discovering 

cyber attacks and other malicious or abnormal traffic.  

Today, most industrial-grade IDS solutions are employing 

signature-based analysis for identifying unwanted network 

activity (the signatures which describe bad traffic are written 

by human experts). Unfortunately, such IDSs are unable to 

discover previously unknown malicious network activity, such 

as zero-day attacks. For this reason, a number of network 

monitoring methods have been proposed which do not rely on 

an extensive human-written signature database, but rather use 

various algorithms for classifying network traffic as normal or 

anomalous. One widely used industrial protocol for collecting 

traffic information is Cisco NetFlow [1]. With NetFlow, a 

router, switch or dedicated network probe keeps track of 

network packets it has forwarded or observed. If a NetFlow-

enabled device sees a flow of packets going from some source 

to some destination, it creates a memory-based record for this 

flow which is identified by source IP, source port, destination 

IP, destination port, transport protocol ID, and few other 

parameters (note that for the return traffic from destination to 

source, another flow record is created). The data stored to a 

flow record include the start and end timestamps of the flow in 

milliseconds, numbers of observed packets and bytes, and the 

union of all observed TCP flags. The device reports a flow 

record to the collector and drops it from memory when the 

corresponding network connection is terminated, or when the 

activity or inactivity timer expires for the flow. In order to 

increase processing speed for backbone networks, packet 

sampling may be configured – flow records are kept in 

memory only for a fraction of packets (e.g., one packet out of 

10,000 is considered). 

Due to the lightweight and efficient nature of NetFlow 

protocol, a number of widely used NetFlow-based network 

monitoring solutions have been developed, e.g., NfSen [2], 

Fprobe [3], Flow-tools [4], SiLK [5] and Nfsight [6]. Also, a 

number of algorithms have been proposed in recent papers for 

detecting malicious and abnormal network activity from 

NetFlow data [7]–[16]. Unfortunately, most of the recent 

research has not considered network anomaly detection for 

organizational private networks specifically, although such 

environments have several unique properties. First, in these 

networks clients can’t exchange arbitrary data with potentially 

unlimited number of nodes in the Internet. Second, corporate 

policies often prohibit many activities which are common in 

public networks, such as the use of P2P protocols for 

exchanging large amounts of data. Therefore, in organizational 

private networks distinct network traffic patterns can be 

observed which deserve closer study. Also, private networks 

have specific monitoring requirements – apart from detecting 

well-known malicious traffic with IDS or other means, it is 

often highly desirable to track connections with seemingly 

harmless content between clients and services, in order to 

identify illegal actions by insiders (e.g., unauthorized access to 

confidential data), malware activity (e.g., zero-day attacks 

against services), illegitimate services, etc. Fortunately, in 

private networks NetFlow data can often be collected without 

sampling which allows for more precise security monitoring.  

The first contribution of this paper is a study of typical 

network usage patterns in a corporate private network. We are 

not aware of any previous work done for similar environments. 

We will then present two novel anomaly detection algorithms 

which rely on these findings. The first algorithm addresses the 

problem of monitoring seemingly legitimate connections 

between clients and services in private networks, and discovers 

unusual TCP and UDP packet flows. The second algorithm 

applies a clustering method for detecting nodes with 

unexpected changes in their service usage patterns.  
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The remainder of this paper is organized as follows: section 

II reviews related work, section III presents the study of 

typical network traffic patterns in an organizational private 

network, section IV proposes algorithms for anomaly detection 

in organizational networks, section V describes the results of 

our experiments, and section VI discusses further work. 

 

II. RELATED WORK  

In this section, we will review some of the recent related 

work in the field of NetFlow-based anomaly detection. 

Wagner and Plattner have suggested an entropy-based worm 

and anomaly detection method which measures entropy 

contents of some network traffic features (IP addresses and 

port numbers) [7]. If changes in entropy contents are observed, 

the method raises an alarm. The authors have demonstrated 

that the method is able to detect worm outbreaks and massive 

scanning activities in near real time. Ranjan et al. have 

suggested another entropy-based worm detection algorithm 

which measures entropy ratios for traffic feature pairs, and 

issues an alarm on sudden changes [8].  

Kind, Stoecklin and Dimitropoulos have proposed a 

histogram-based anomaly detection approach [9]. With this 

approach, histogram-based baselines are constructed from 

training data for some essential network traffic features (such 

as source IP address, destination IP address, source port 

number, etc.). If a deviation from a baseline is observed during 

network monitoring for some traffic feature, an alarm will be 

raised. Brauckhoff, Dimitropoulos, Wagner and Salamatian 

have augmented a histogram-based anomaly detection 

approach with association rule mining, in order to identify 

NetFlow records representing anomalous network traffic [10].  

Weigert, Hiltunen and Fetzer have proposed a graph-based 

method for communities, where community members are 

institutions of the same type [11]. The method maintains 

graphs for IP addresses which communicate with members, 

and is able to identify similar attacks against several members. 

In their paper [12], Bartoš, Grill, Krmíček, Řehák and Čeleda 

describe a system which employs fast NetFlow probes. Flows 

collected from probes are processed by several agents with 

different anomaly detection algorithms. The results from 

agents are aggregated, in order to reduce the number of false 

positives. Wagner, François, State and Engel have proposed an 

approach based on support vector machines, in order to 

classify flow records [13]. 

Münz, Li and Carle have suggested a method which applies 

k-means clustering algorithm for NetFlow training data [14]. 

Detected cluster centroids are assumed to describe normal 

network traffic, and substantially different traffic can be 

classified as anomalous. Paredes-Oliva, Castell-Uroz, Barlet-

Ros, Dimitropoulos and Solé-Pareta have proposed a method 

which first discovers frequent traffic patterns with a frequent 

itemset mining algorithm, and then applies decision trees for 

finding anomalous patterns [15]. The author of this paper has 

suggested another frequent itemset mining approach for near-

real-time identification of strong anomalous network traffic 

patterns [16]. 

 

III. A STUDY OF TRAFFIC PATTERNS IN AN ORGANIZATIONAL 

PRIVATE NETWORK 

In this section, we will present a study of traffic patterns in 

an organizational private network. For our study, we collected 

NetFlow data from a private backbone network of a large 

financial institution. The data set was collected during 150 

days without packet sampling and contains 1,093,911,511 flow 

records. During the collection period, data for 1,780 nodes 

were recorded, with 436 nodes being workstations. Other 

nodes include several hundreds of servers, printers, network 

switches, but also a number of specialized nodes like ATMs, 

UPS devices, environment monitoring modules, etc. 

We define the service as a tuple (IP address, port number, 

transport protocol ID), while the client of a service is defined 

as an IP address which is employed for communicating with 

the service. In order to distinguish services and clients from 

each other and analyze their behavioral patterns, we 

preprocessed the collected data set using heuristics described 

in subsection IVa. We found that during 150 days, 2,924 

services were used by 1,609 clients. When we analyzed the 

number of clients the services have on a daily basis, we 

discovered that most services are used by only few clients per 

day. We calculated an average number of clients per day for 

each service, and divided services into non-overlapping groups 

by the calculated figure. Table I summarizes our findings. 

According to Table I, less than 10% of services have an 

average of 5 or more clients per day, while 76.74% of services 

TABLE I 

SERVICE GROUPS BY THE AVERAGE NUMBER OF CLIENTS PER DAY 

Service groups by the 

average number of 

clients per daya 

Number of services 

in a group 

Average number of 

days of service usageb 

Services with an average 

of 100 or more clients 

per day 

28 (≈0.96%) 137.21 

Services with an average 

of at least 25 and less 

than 100 clients per day 

87 (≈2.98%) 84.32 

Services with an average 

of at least 10 and less 

than 25 clients per day 

96 (≈3.28%) 48.11 

Services with an average 

of at least 5 and less than 

10 clients per day 

65 (≈2.22%) 99.94 

Services with an average 

of at least 2 and less than 

5 clients per day 

404 (≈13.82%) 39.72 

Services with an average 

of more than 1 and less 

than 2 clients per day 

648 (≈22.16%) 89.04 

Services with an average 

of at most 1 client per 

day 

1,596 (≈54.58%) 25.84 

 aClients per day average for each service was calculated for days the 

service was active (e.g., if a service was used during 138 days, the average 

was found for 138 days) 

 bCalculated for services in a given group. 



  

have an average of less than 2 clients per day. When we 

investigated services with few clients more closely, we 

discovered that a large part of them are specialized services 

which are not used by humans. For example, we found that 

about 20% of all services are SNMP agents which are accessed 

by few dedicated network management nodes. In addition to 

SNMP, a number of other protocols are extensively employed 

in the private network for system management, for 

communications between infrastructure components, etc. In all 

such cases the services typically have only 1-2 clients with 

well-known IP addresses. 

In order to estimate how many network flows are associated 

with services which are consistently consumed by larger 

number of clients, we investigated the services which are used 

by at least 100 clients per day during at least 75 days (half of 

the timeframe covered by our NetFlow data set). We identified 

28 such services, including corporate web proxies, mail 

servers, and name servers. We discovered that 417,771,347 

flow records (38.19% of records in the data set) reflect 

network traffic from/to them. When we inspected the services 

which are used by at least 25 clients per day during at least 75 

days, we found 67 services with 691,655,760 flow records 

(63.23% of records in the data set) associated with them.  

To summarize our findings, majority of the services have 

very few clients (often with well-known IP addresses), while 

only a small fraction of services are consistently accessed by 

many clients. Nevertheless, a large part of collected NetFlow 

data describes the network traffic from/to such few popular 

services. 

We also analyzed the behavior of 1,609 client nodes. We 

found that 944 clients (58.67% of clients) consumed services 

during at least 120 days (80% of the timeframe covered by the 

data set), while 1,193 clients (74.15% of clients) consumed 

services during at least 30 days (20% of the timeframe covered 

by the data set). 83 clients were active during one day only. 

We also calculated an average number of used services per day 

for each client, and employed this figure for dividing clients 

into non-overlapping groups. Our findings are presented in 

Table II. 

According to the table, almost 99% of clients are accessing 

an average of less than 50 services per day, while for 91.49% 

of clients the average number of consumed services remains 

below 25 per day. Furthermore, 66% of clients are contacting 

an average of less than 5 services per day. When we conducted 

a separate analysis for workstation client nodes, we found that 

the average number of used services per day ranges from 1 to 

53, with the overall average 18.26 across 436 workstations. In 

other words, large majority of clients are consuming either few 

or moderate number of services each day. Moreover, this 

network behavior is also common for workstations, although 

human users are often not following the same service usage 

pattern on a daily basis. Other researchers have observed a 

similar phenomenon for university campus workstations [17].   

Finally, we tried to estimate how often clients are accessing 

services they have used before. For this purpose, we extracted 

the list of all consumed services for each client from the entire 

150 day NetFlow data set. We found that only 63 clients 

contacted more than 100 services, 336 clients contacted 50-99 

services, 150 clients contacted 25-49 services, 88 clients 

contacted 10-24 services, and 972 clients contacted less than 

10 services. We also found that 692 clients contacted at least 

75% of services in their list during 75 days or more. Also, 922 

and 1,330 clients used at least 50% and 25% of their services, 

respectively, during 75 days or more. These figures suggest 

that client nodes are using the same services over longer 

periods of time, and if a service has been accessed before, it is 

likely to be accessed in the future. 

Another interesting phenomenon is that clients often access 

services which other clients have recently used, and seldom 

establish a connection to a rarely used service. When we 

investigated service sharing during 150 days, we discovered 

that 1,479-1,559 (91.92%-96.89%) clients contacted only 

these services which were also used by at least one other client 

during the same day. We have observed similar service sharing 

patterns during our previous research – a 2 week experiment 

revealed that in 1 hour time windows, 68-94% of workstations 

only interacted with services used by at least 4 other nodes 

within the same 1 hour window [18]. 

TABLE II 

CLIENT GROUPS BY THE AVERAGE NUMBER OF USED SERVICES PER DAY 

Client groups by the 

average number of used 

services per daya 

Number of clients in 

a group 

Average number of 

days of client 

activityb 

Clients with an average 

of 100 or more used 

services per day 

8 (≈0.50%) 107.25 

Clients with an average 

of at least 50 and less 

than 100 used services 

per day 

11 (≈0.68%) 91.82 

Clients with an average 

of at least 25 and less 

than 50 used services per 

day 

118 (≈7.33%) 119.96 

Clients with an average 

of at least 10 and less 

than 25 used services per 

day 

306 (≈19.02%) 138.11 

Clients with an average 

of at least 5 and less than 

10 used services per day 

112 (≈6.96%) 128.25 

Clients with an average 

of at least 2 and less than 

5 used services per day 

198 (≈12.31%) 99.77 

Clients with an average 

of more than 1 and less 

than 2 used services per 

day 

239 (≈14.85%) 99.26 

Clients with an average 

of at most 1 used service 

per day 

625 (≈38.84%) 75.70 

 aServices per day average for each client was calculated for days the 

client was active (e.g., if a client was active during 25 days, the average was 

found for 25 days) 

 bCalculated for clients in a given group. 



  

IV. ANOMALY DETECTION FOR ORGANIZATIONAL PRIVATE 

NETWORKS 

In this section, we will present two algorithms for anomaly 

detection in organizational private networks. The algorithms 

leverage typical traffic patterns and node behavior discussed in 

the previous section. Both algorithms employ a service 

detection method which discovers TCP and UDP based 

network services from NetFlow data sets of recent past (e.g., 

data from last 30 days). This information is used for creating 

behavior profiles for each client. Proposed anomaly detection 

algorithms use these profiles for near-real-time detection of 

anomalous network flows, and for daily detection of node 

behavior changes through data clustering. The following 

subsections provide a detailed discussion of our algorithms.   

A. Service Detection From NetFlow Data 

Service detection from NetFlow data sets is a non-trivial 

task, because NetFlow records do not contain information 

about the initiator of a network connection (see also [6] for a 

related discussion). For example, although each NetFlow 

record for TCP traffic contains a separate field for the union of 

TCP flags observed during the flow, the successful negotiation 

of a TCP connection sets SYN and ACK flags for both records 

describing the directions of the connection. Since throughout 

the rest of the connection both sides can use the same flag 

combinations in packet headers, the TCP flags field of the 

NetFlow record can’t be employed for distinguishing the 

server from the client. Also, connectionless transport protocols 

like UDP do not involve any specific negotiations between the 

client and server before the actual data transfer. Each NetFlow 

record includes the timestamp of the start of the flow 

(measured in milliseconds), and it seems tempting to assume 

that when two records for a new connection are created, the 

flow record with an earlier timestamp reflects the traffic from 

client to server. However, quite often the first packet from the 

client and the server response are observed within the same 

millisecond. Furthermore, during our experiments we have 

seen buggy NetFlow implementations which sometimes set 

flow timestamps to incorrect values. For these reasons, 

comparing the timestamps of two records for a given 

connection will not always reliably distinguish a client from a 

server. Also, in the case of some UDP based protocols data 

travel from client to server only (e.g., SNMP traps and BSD 

syslog messages).  

In order to address the problem of network service 

discovery from NetFlow data, we are using the following 

approximate method for finding TCP and UDP based services. 

During data set processing, flow records for UDP flows and 

for TCP flows with SYN and ACK flags are considered. First 

a pass over the data set is made, and a list of service 

candidates is created with several heuristic steps which are 

applied in the given order (some of these heuristics are also 

used by the Nfsight network monitoring tool [6]): 

1. If a flow record reflects a communication between 

host ip1 port p1 and host ip2 port p2 over transport 

protocol proto, with p1 being an unprivileged and 

p2 a privileged port (i.e., p1  1024 and p2 < 1024), 

consider (ip2, p2, proto) as a candidate. 

2.  If a flow record reflects a communication between 

host ip1 port p1 and host ip2 port p2 over transport 

protocol proto, with p1 being an unprivileged and 

p2 a predefined unprivileged service port (during 

our experiments, we used 5 predefined TCP port 

numbers), consider (ip2, p2, proto) as a candidate. 

3. If a flow record with timestamp t reflects a 

communication from host ip1 port p1 to host ip2 

port p2 over transport protocol proto, and during 

past processing we have observed a record with an 

earlier timestamp t’ (t – d  t’ < t) for 

communication from host ip2 port p2 to host ip1 

port p1 over proto, consider (ip1, p1, proto) as a 

candidate (during the experiments, we have set d 

to 120 seconds). 

4. If a flow record with timestamp t reflects a 

communication from host ip1 port p1 to host ip2 

port p2 over UDP, and during past processing we 

have not observed a record with an earlier 

timestamp t’ (t – d  t’ < t) for communication 

from host ip2 port p2 to host ip1 port p1 over UDP, 

consider (ip2, p2, UDP) as a candidate.  

 

During the data pass, the number of flow records and the list 

of distinct clients associated with each candidate service are 

retained in memory (according to section III, most services 

have few clients). After this, the second data pass is made, and 

several other heuristics are applied to candidate services, in 

order to remove false positives and find nodes which run 

dynamic services. First, if during the data pass a record is 

observed where one endpoint is a service candidate with many 

associated flows and clients, and the other endpoint is a 

candidate with few associated flows, the latter will be dropped 

from the candidate list, since it is very likely to represent the 

client side of the connection. Second, if a well-known 

portmapper service port (e.g., 135/tcp) of some host has many 

associated flows and clients, and there are also many flow 

records describing traffic between unprivileged ports of this 

host and other nodes, consider unprivileged ports of the host as 

service ports. However, during our experiments we found only 

few such hosts from daily NetFlow data sets (1-14 hosts per 

day). After the second data pass, the refined list of service 

candidates will be reported as the list of discovered services. 

The service list will serve as input for anomaly detection 

algorithms described in the following subsections. 

B. Near-Real-Time Detection of Anomalous Network Flows 

For detecting anomalous network flows, we have developed 

a method which builds service usage profiles for each client 

from past NetFlow data sets, and then employs these profiles 

for distinguishing anomalous network activity from normal 

traffic in near-real-time.  

 



  

Input: n – mine client profiles and widely used services from NetFlow 

           data sets of last n days (D1, …, Dn) 

minusage – relative threshold for service usage days 

mindays – absolute threshold for service usage days 

minclnt – threshold for number of clients of a widely used service 

mindays2 – threshold for activity days of a widely used service 

 

Output:  {Pc1, …, Pcm} – profiles for all detected clients c1, …, cm  

W – the set of widely used services 

 

foreach i  (1, ..., n) do  

discover the list of services Si from Di, using the method from 

subsection IVa; 

 

 Ci := ; 

      foreach s  Si do Ls,i := ; done 

 

loop1: 

 foreach r  Di do 

    if (rproto = UDP or 

        (rproto = TCP and {SYN, ACK}  rflags)) then 

       if ((rdstip, rdstport, rproto)  Si) then  

          c := rsrcip;  s := (rdstip, rdstport, rproto); 

       elsif ((rsrcip, rsrcport, rproto)  Si) then  

          c := rdstip;  s := (rsrcip, rsrcport, rproto); 

       else continue to the next step of loop1; fi 

       Ls,i := Ls,i  {c}; 

       if (c  Ci) then  Ci := Ci  {c};  Kc,i := {s}; 

       else Kc,i := Kc,i  {s}; fi 

    fi 

done 

done 

 

foreach c  i
n
=1 Ci do  Pc := ; Mc := ; done 

 

foreach i  (1, ..., n) do  

   foreach c  Ci do 

      foreach s  Kc,i do 

         Mc := Mc  {s}; 

         if (uninitialized(daysc,s)) then daysc,s := 0; fi 

         daysc,s := daysc,s + 1; 

      done 

      if (uninitialized(days2c)) then days2c := 0; fi   

      days2c := days2c + 1; 

   done 

done 

 

foreach c  i
n
=1 Ci do 

   foreach s  Mc do  

      if (daysc,s / days2c   minusage  

          and daysc,s  mindays) then Pc := Pc  {s}; fi 

   done 

done 

 

W := ; 

foreach i  (1, ..., n) do 

  foreach s  Si do  

     if (uninitialized(days3s)) then days3s := 0; fi 

     if (|Ls,i |  minclnt) then days3s := days3s + 1; fi 

  done 

done 

foreach s  i
n
=1 Si do  

  if (days3s  mindays2) then W := W  {s}; fi 

done 

 

Fig. 1. An algorithm for mining client profiles and widely used 

services from NetFlow data sets 

  
 

The method relies on the observation that if a client has 

used a service frequently in the past, the client is likely to use 

this service in the future (see section III). Our method mines 

service usage profiles from daily NetFlow data sets D1, ..., Dn 

of the last n days. We assume that each Di is a set of NetFlow 

records Di = {r1, ..., rki}, where each record has a number of 

attributes, including proto, srcip, srcport, dstip, dstport, and 

flags (the union of TCP flags observed during the lifetime of 

the flow). The mining is conducted once in every 24 hours, in 

order to update the profiles and adjust to environment changes. 

The profile mining algorithm is outlined in Figure 1. 

Informally, after clients and services have been detected 

from D1, ..., Dn, the profile for each client will be set up which 

is a list of frequently used services by this client. A service will 

be included in the profile if the client has accessed it at least 

during (100*minusage)% of days of client activity (e.g., if the 

client has been active during 20 days and minusage is 0.5, 

services accessed during 10 days or more are included in the 

profile). In addition to this relative threshold, the algorithm 

employs an absolute threshold mindays which is convenient 

for less active clients (e.g., if mindays is 5 and the client has 

been active for 5 days, only services used during all days can 

be included in the profile).  

However, with this approach not all clients would have 

profiles – for example, clients which have been active for less 

than mindays days, and previously unseen clients which appear 

during near-real-time flow monitoring. Also, during our 

experiments we have observed that some clients access 

popular services with varying frequency which might leave 

these services out from their profiles, and thus trigger false 

positives. In order to address these issues, the algorithm 

presented in Figure 1 also builds the set of widely used 

services W which is employed as a default client profile, and 

also for filtering out false positives. A service is included in W 

if it is used during at least mindays2 days by at least minclnt 

distinct clients per day. The employment of W is motivated by 

typical traffic patterns described in section III – clients mostly 

communicate with services also used by other nodes, and 

access to a popular service is thus likely a normal activity.   

For faster execution of the mining algorithm, the sets W, Pci 

(client profiles), Ls,i (clients of given services for given days), 

Kc,i (services for given clients for given days), and Mc (services 

for given clients for all days)  have to be kept in memory. 

Fortunately, as discussed in section III, for most clients the 

number of consumed services remains either moderate or 

small. Furthermore, only few services have larger number of 

clients per day. Therefore, the aforementioned sets have a 

moderate size and fit into memory. 

After client profiles and the set of widely used services have 

been discovered, this knowledge is employed for classifying 

flow records arriving from NetFlow-enabled network devices 

(see Figure 2). Since the device might report a flow record 

with a slight delay (typically at most few minutes after the 

network traffic was observed), the anomaly detection is 

accomplished in near-real-time. The algorithm classifies 



  

records for UDP flows and for TCP flows with SYN and ACK 

flags (such TCP flows represent successfully established new 

TCP connections). Other flow records are regarded as out of 

scope. If the flow record describes communication with an 

unusual service for a client with the profile, or if neither peer is 

recognized as a widely used service, the algorithm reports the 

flow as anomalous. This allows for detecting unusual behavior 

of clients, but also the appearance of new and potentially 

illegal services. In order to avoid large numbers of false 

positives when a new widely used legitimate service is 

introduced, the administrators can add services to set W 

through an external white-list (however, during our 

experiments we have not used this measure). Since sets Pc1, 

…, Pcm and W mostly contain moderate number of elements, 

the algorithm can store them in memory for faster execution. 
 

Input: r – NetFlow record; 

{Pc1, …, Pcm} – client profiles;  

W – the set of widely used services 

 

Output:  1 if flow record r is anomalous;  

0 if flow record r is normal; 

-1 if flow record is out of scope of the algorithm 

 

if (rproto  UDP or rproto  TCP or 

    (rproto = TCP and {SYN, ACK}  rflags)) then return -1; fi 

k1 :=  rsrcip;   

k2 :=  rdstip;   

if (exists(Pk1) and (rdstip, rdstport, rproto)  Pk1) then return 0; fi 

if (exists(Pk2) and (rsrcip, rsrcport, rproto)  Pk2) then return 0; fi 

if ((rdstip, rdstport, rproto)  W) then return 0; fi 

if ((rsrcip, rsrcport, rproto)  W) then return 0; fi 

return 1; 

 

Fig. 2. Anomaly detection algorithm for NetFlow records. 

  
Finally, since the algorithm focuses on anomaly detection 

for seemingly legitimate traffic, it does not monitor for well-

known malicious network activities which leave specific traces 

in NetFlow data (e.g., TCP SYN-FIN scans). Nevertheless, 

such malicious traffic can be easily detected by writing simple 

filtering conditions for flow records. 

C. Monitoring Node Behavior Changes 

The method described in the previous subsection is capable 

of identifying anomalous data exchanges with services which 

are neither frequently accessed by the client nor commonly 

used by many other nodes. However, for some clients this 

monitoring might not be sufficient enough. For example, if the 

node is not a workstation but is rather running dedicated 

software which communicates with specific services only, 

deviations from normal service usage patterns should be 

monitored more closely. Unfortunately, it is quite hard to 

establish individual monitoring thresholds for each such node 

separately, since their number might be too large. However, 

quite often dedicated nodes form larger groups, with group 

members having (almost) identical network behavior. 

Therefore, the members can be monitored by first identifying a 

common behavioral pattern for the whole group, and then 

using this as a baseline for each member. In this subsection, we 

propose a data clustering algorithm for the detection of such 

groups, and a method for using detected clusters for finding 

behavior changes of individual nodes. The clustering 

algorithm is outlined in Figure 3.  

 
Input:   D – NetFlow data set;  

       m – minimum number of clients for a frequent service; 

            e – distance threshold for the node to be included in a cluster 

 

Output: Descr – the set of cluster descriptions; 

Clusters – the set of clusters 

 

S := { services detected from D with method from subsection IVa }; 

C := { clients of services S detected from D }; 

foreach c  C do Kc := { services used by client c }; done 

foreach s  S do Ls : = { clients which used service s }; done 

 

SF := { s | s  S, |Ls|  m }; 

Cand := ; 

 

foreach c  C do 

    T := { s | s  Kc, s  SF }; 

    if (|T| > 0) then 

        if (uninitialized(counterT)) then counterT := 0; fi 

        Cand := Cand  { T };  counterT := counterT + 1; 

    fi 

done 

 

Cand := { T | T  Cand, counterT  m} 

foreach T  Cand do MembersT := ; done 

 

foreach c  C do 

    maxd := 0; 

    foreach T  Cand do 

        if (T  Kc and |T|/|Kc| > maxd and |T|/|Kc|  e) then 

            maxd := |T|/|Kc|;  R := T;  fi  

    done 

    if (maxd > 0) then MembersR := MembersR  {c}; fi 

done 

 

Descr := { T | T  Cand, |MembersT| > 0 }  

Members := { c | c  C, T  Descr  c  MembersT } 

Descr := Descr  {  } 

Clusters := { MembersT | T  Descr } 

 

Fig. 3. Node clustering algorithm for NetFlow data. 

  
The algorithm first identifies services which are used by at 

least m clients (so called frequent services), and then finds sets 

of frequent services which are used by at least m clients. Each 

set is regarded as a description of a cluster candidate. After 

that, the closest candidate description is found for each client 

node, and the node is regarded as a member of this cluster 

candidate. The distance d(c, A) between the node c and the 

candidate description A is found as follows – if B is the set of 

all services node c has used, then d(c, A) = |A|/|B| if A  B, and 

d(c, A) = 0 otherwise (note that 0  d(c, A)  1). The algorithm 

also uses the distance threshold e during clustering – if the 

distance from the node to any candidate description is smaller 

than e, the node is assigned to the cluster of outliers. For the 

cluster of outliers, we define its description as an empty set of 

services. Finally, cluster candidates without any members are 

dropped, and remaining candidates are selected as clusters.  

Due to the nature of the algorithm, nodes with similar 



  

service usage patterns are assigned to the same cluster. Also, 

each cluster description naturally describes the common 

service usage pattern for all cluster members. The use of 

threshold m ensures that clusters are selected from candidates 

representing service usage patterns appearing frequently 

enough in the data set. With higher values for distance 

threshold e, only these nodes which match the common service 

pattern very closely are included in the cluster. If Clusters is a 

set of clusters, ClustersC denotes the cluster with the 

description C.  In order to measure, how well the cluster 

description C captures the network behavior of all cluster 

members m1, …, mk (mi  ClustersC, |ClustersC| = k), we 

define the cluster significance S(ClustersC) as follows:  

S(ClustersC) =  i
k
= 1 d(mi, C) / k. 

In order to use this clustering algorithm for monitoring node 

behavior, we run the algorithm at the end of each day, and 

compare the clustering for the current day with clustering 

results for previous n days. Our method first checks if a given 

node has been a member of clusters with high significance 

during previous n days, and if the node’s service usage 

patterns have been close enough to cluster descriptions. Also, 

the method verifies that the number of distinct cluster 

descriptions for previous n days is modest, and the average 

number of cluster members remains above the given threshold. 

Nodes not fulfilling these criteria are dropped from further 

consideration, since their network behavior has been either 

constantly changing or not similar enough to larger group(s) of 

other nodes.  

For every remaining node the method verifies that its cluster 

description for the current day appears within the list of cluster 

descriptions for previous n days. In other words, the algorithm 

checks if the current service usage pattern of the node has 

already been observed in the past. If this is not the case and the 

cluster represents a new service usage pattern, the method 

checks if most other nodes in the cluster have consistently 

appeared in same clusters with the given node in the past (in 

other words, the behavior of the whole group of similar nodes 

has changed). If either of these conditions holds, the node 

behavior is regarded as normal, and abnormal otherwise.  

Formally, for each client node c that is part of the clustering 

for the current day, the method applies the following steps 

(Clusters denotes the current clustering, and Clusters
1
, …, 

Clusters
n
 the clusterings for previous n days). The method is 

called NodeBehavior and takes n, minavgD, minavgM, 

minavgS, maxclust, thresh and thresh2 as input parameters: 

1. Find the cluster description C for node c in 

Clusters (i.e., c  ClustersC). 

2. If node c has not been active during the previous n 

days, terminate the processing and return “out of 

scope”. If node c was active for m days i
1
,…,i

m
 (1 

 m  n), find cluster descriptions C1, …, Cm and 

clusters Clusters
i1

C1, …, Clusters
im

Cm for all m 

days for c (c  Clusters
ij

Cj, 1  j  m).  

3. Find the average cluster significance AvgS(c) for 

node c: AvgS(c) := j
m

= 1 S(Clusters
ij

Cj) / m. Also, 

find the average distance AvgD(c) from c to C1, 

…, Cm: AvgD(c) := j
m

= 1 d(c, Cj) / m. Finally, 

find the average number of cluster members 

AvgM(c) for node c: AvgM(c) := j
m

= 1 

|Clusters
ij

Cj| / m. If AvgS(c) is smaller than 

minavgS, or AvgD(c) is smaller than minavgD, or 

AvgM(c) is smaller than minavgM, terminate the 

processing and return “out of scope”. 

4. Find the number of unique elements u in the list 

C1, …, Cm: u := | j
m

= 1 { Cj } |. If u is larger than 

maxclust, terminate the processing and return “out 

of scope”. 

5. If the cluster description C for the current day 

appears within the list C1, …, Cm, terminate the 

processing and return “normal”. 

6. If the cluster description C for the current day does 

not belong to the list C1, …, Cm, extract other 

nodes from cluster ClustersC. If at least 

(100*thresh)% of these nodes appear in at least 

(100*thresh2)% of clusters Clusters
i1

C1, …, 

Clusters
im

Cm, terminate the processing and return 

“normal”; otherwise return “anomalous”. 

 

V. EXPERIMENTS 

In order to evaluate the performance of algorithms proposed 

in the previous section, we have run prototype 

implementations of them in a private backbone network of a 

large financial institution (the data for traffic pattern study 

presented in section III were obtained from the same 

environment). The experiment lasted for 123 days from June 

2012 to October 2012, and involved the processing of 

801,477,584 NetFlow records. 

For near-real-time anomaly detection of network flows, we 

used the following input parameter values for daily mining of 

client profiles Pc1, …, Pcm and the set of widely used services 

W (see Figure 1): n=30, minusage=0.25, mindays=5, 

minclnt=50, mindays2=15. In other words, NetFlow data sets 

of the last 30 days were mined, and a service was included in 

the client profile if it was used during at least 25% of days of 

client activity, but no less than 5 days. Services consumed by 

at least 50 clients during at least 15 days were regarded as 

widely used services. The flow anomaly detector (see Figure 

2) was implemented in Perl and was running as a daemon on a 

Linux server. As discussed in subsection IVb, the memory 

requirements of the detector are modest, and during our 

experiments its memory consumption remained under 10MB. 

During the experiment of 123 days, the anomaly detector 

classified 679,402,649 flow records as normal and 28,976 

records as anomalous (remaining records were regarded as 

being out of scope). However, almost half of the anomalous 

records (13,744) were detected during a single day, while 

during other two days 1,805 and 1,752 flows were tagged as 

anomalous. For the remaining 120 days the number of 

anomalous flows ranged from 2 to 521 (an average of 97.29 



  

flows per day). Since typically few hundred anomalous flows 

are reported per day, the human administrator can easily 

inspect them. The anomalous flows reported during our 

experiment represent a variety of unusual network traffic. For 

example, we detected abnormal packets triggered by faults in 

device configurations (e.g., SNMP traps sent to wrong 

destinations), anomalous end user actions (e.g., print jobs 

submitted from a workstation to a wrong printer in another 

city), but also unusual system management activity (e.g., SSH 

connections to rarely managed devices). 

We also implemented the NodeBehavior method for 

automated discovery of node groups with common service 

usage patterns, and finding deviations from common node 

group behavior. For the NodeBehavior method, input 

parameter values were n=30, minavgD=0.9, minavgM=5, 

minavgS=0.9, maxclust=10, thresh=0.9, and thresh2=0.9. For 

daily node clustering (see Figure 3), input parameters were set 

as m=10 and e=0.75. During the whole experiment, 1,557 

clients were observed, and the algorithm was able to report 

normal or anomalous behavior for 485-603 nodes per day (for 

remaining nodes, “out of scope” was returned). The number of 

detected clusters per day ranged from 57 to 72, and the 

number of anomalous nodes from 0 to 21 (an average of 2.08 

nodes per day). We discovered that in many cases node 

behavior was regarded as anomalous because of an access to 

rarely used legitimate service (e.g., an SNMP trap alert was 

sent to a network management server, while other similar 

nodes did not issue any alerts during the same day). However, 

in a number of cases node behavior was regarded anomalous 

for not consuming a service used by other nodes in the same 

group. For example, this helped to discover nodes which had 

stopped sending syslog messages to a central collection point, 

or had stopped synchronizing their clocks with a central NTP 

server. In other words, the clustering based anomaly detection 

is quite useful for finding unusual inactivity of a node. 

 

VI. FUTURE WORK 

In this paper, we have presented a study of traffic patterns in 

an organizational private network, and have presented two 

anomaly detection methods for identifying unusual TCP and 

UDP traffic. The methods suggested in this paper can be 

extended in several ways. First, other clustering algorithms 

with different distance functions could be harnessed for 

finding nodes with similar service usage patterns. Second, if 

dynamic addressing is used for workstations, IP addresses 

can’t be reliably associated with end users who are often 

following distinct network usage patterns. For tackling this 

issue, a mapping between successfully authenticated users and 

workstation IP addresses could be stored in a database, and 

this information could be employed for identifying 

workstations by username, not by IP address. Third, while 

algorithms proposed in this paper focus on client network 

behavior, we plan to extend this work with service anomaly 

detection (e.g., finding illegitimate clients). Finally, we would 

like to investigate the use of other flow attributes (e.g., flow 

duration) for anomaly detection purposes. 
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