

Detecting Anomalous Network Traffic in Organizational Private Networks

Risto Vaarandi

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This paper has been accepted for publication at the 2013 IEEE CogSIMA Conference, and the final version of the paper is

included in Proceedings of the 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation

Awareness and Decision Support (DOI: 10.1109/CogSIMA.2013.6523859)

Abstract—During the last decade, network monitoring and

intrusion detection have become essential techniques of cyber

security. Nowadays, many institutions are using advanced

solutions for detecting malicious network traffic, discovering

network anomalies, and preventing cyber attacks. However, most

research in this area has not been conducted specifically for

organizational private networks, and their special properties have

not been considered. In this paper, we first present a study of

traffic patterns in a corporate private network, and then propose

two novel algorithms for detecting anomalous network traffic and

node behavior in such networks.

Index Terms—cyber security, network anomaly detection,

network monitoring, network forensics

I. INTRODUCTION

URING the last decade, network monitoring and intrusion

detection have become essential techniques of cyber

security. A number of vendors are offering advanced solutions

for intrusion detection and prevention, for network anomaly

detection, for network alarm correlation, and for other security

monitoring purposes. Many larger institutions are using a

dedicated intrusion detection system (IDS) for discovering

cyber attacks and other malicious or abnormal traffic.

Today, most industrial-grade IDS solutions are employing

signature-based analysis for identifying unwanted network

activity (the signatures which describe bad traffic are written

by human experts). Unfortunately, such IDSs are unable to

discover previously unknown malicious network activity, such

as zero-day attacks. For this reason, a number of network

monitoring methods have been proposed which do not rely on

an extensive human-written signature database, but rather use

various algorithms for classifying network traffic as normal or

anomalous. One widely used industrial protocol for collecting

traffic information is Cisco NetFlow [1]. With NetFlow, a

router, switch or dedicated network probe keeps track of

network packets it has forwarded or observed. If a NetFlow-

enabled device sees a flow of packets going from some source

to some destination, it creates a memory-based record for this

flow which is identified by source IP, source port, destination

IP, destination port, transport protocol ID, and few other

parameters (note that for the return traffic from destination to

source, another flow record is created). The data stored to a

flow record include the start and end timestamps of the flow in

milliseconds, numbers of observed packets and bytes, and the

union of all observed TCP flags. The device reports a flow

record to the collector and drops it from memory when the

corresponding network connection is terminated, or when the

activity or inactivity timer expires for the flow. In order to

increase processing speed for backbone networks, packet

sampling may be configured – flow records are kept in

memory only for a fraction of packets (e.g., one packet out of

10,000 is considered).

Due to the lightweight and efficient nature of NetFlow

protocol, a number of widely used NetFlow-based network

monitoring solutions have been developed, e.g., NfSen [2],

Fprobe [3], Flow-tools [4], SiLK [5] and Nfsight [6]. Also, a

number of algorithms have been proposed in recent papers for

detecting malicious and abnormal network activity from

NetFlow data [7]–[16]. Unfortunately, most of the recent

research has not considered network anomaly detection for

organizational private networks specifically, although such

environments have several unique properties. First, in these

networks clients can’t exchange arbitrary data with potentially

unlimited number of nodes in the Internet. Second, corporate

policies often prohibit many activities which are common in

public networks, such as the use of P2P protocols for

exchanging large amounts of data. Therefore, in organizational

private networks distinct network traffic patterns can be

observed which deserve closer study. Also, private networks

have specific monitoring requirements – apart from detecting

well-known malicious traffic with IDS or other means, it is

often highly desirable to track connections with seemingly

harmless content between clients and services, in order to

identify illegal actions by insiders (e.g., unauthorized access to

confidential data), malware activity (e.g., zero-day attacks

against services), illegitimate services, etc. Fortunately, in

private networks NetFlow data can often be collected without

sampling which allows for more precise security monitoring.

The first contribution of this paper is a study of typical

network usage patterns in a corporate private network. We are

not aware of any previous work done for similar environments.

We will then present two novel anomaly detection algorithms

which rely on these findings. The first algorithm addresses the

problem of monitoring seemingly legitimate connections

between clients and services in private networks, and discovers

unusual TCP and UDP packet flows. The second algorithm

applies a clustering method for detecting nodes with

unexpected changes in their service usage patterns.

Detecting Anomalous Network Traffic in

Organizational Private Networks

Risto Vaarandi, NATO Cooperative Cyber Defence Centre of Excellence

D

The remainder of this paper is organized as follows: section

II reviews related work, section III presents the study of

typical network traffic patterns in an organizational private

network, section IV proposes algorithms for anomaly detection

in organizational networks, section V describes the results of

our experiments, and section VI discusses further work.

II. RELATED WORK

In this section, we will review some of the recent related

work in the field of NetFlow-based anomaly detection.

Wagner and Plattner have suggested an entropy-based worm

and anomaly detection method which measures entropy

contents of some network traffic features (IP addresses and

port numbers) [7]. If changes in entropy contents are observed,

the method raises an alarm. The authors have demonstrated

that the method is able to detect worm outbreaks and massive

scanning activities in near real time. Ranjan et al. have

suggested another entropy-based worm detection algorithm

which measures entropy ratios for traffic feature pairs, and

issues an alarm on sudden changes [8].

Kind, Stoecklin and Dimitropoulos have proposed a

histogram-based anomaly detection approach [9]. With this

approach, histogram-based baselines are constructed from

training data for some essential network traffic features (such

as source IP address, destination IP address, source port

number, etc.). If a deviation from a baseline is observed during

network monitoring for some traffic feature, an alarm will be

raised. Brauckhoff, Dimitropoulos, Wagner and Salamatian

have augmented a histogram-based anomaly detection

approach with association rule mining, in order to identify

NetFlow records representing anomalous network traffic [10].

Weigert, Hiltunen and Fetzer have proposed a graph-based

method for communities, where community members are

institutions of the same type [11]. The method maintains

graphs for IP addresses which communicate with members,

and is able to identify similar attacks against several members.

In their paper [12], Bartoš, Grill, Krmíček, Řehák and Čeleda

describe a system which employs fast NetFlow probes. Flows

collected from probes are processed by several agents with

different anomaly detection algorithms. The results from

agents are aggregated, in order to reduce the number of false

positives. Wagner, François, State and Engel have proposed an

approach based on support vector machines, in order to

classify flow records [13].

Münz, Li and Carle have suggested a method which applies

k-means clustering algorithm for NetFlow training data [14].

Detected cluster centroids are assumed to describe normal

network traffic, and substantially different traffic can be

classified as anomalous. Paredes-Oliva, Castell-Uroz, Barlet-

Ros, Dimitropoulos and Solé-Pareta have proposed a method

which first discovers frequent traffic patterns with a frequent

itemset mining algorithm, and then applies decision trees for

finding anomalous patterns [15]. The author of this paper has

suggested another frequent itemset mining approach for near-

real-time identification of strong anomalous network traffic

patterns [16].

III. A STUDY OF TRAFFIC PATTERNS IN AN ORGANIZATIONAL

PRIVATE NETWORK

In this section, we will present a study of traffic patterns in

an organizational private network. For our study, we collected

NetFlow data from a private backbone network of a large

financial institution. The data set was collected during 150

days without packet sampling and contains 1,093,911,511 flow

records. During the collection period, data for 1,780 nodes

were recorded, with 436 nodes being workstations. Other

nodes include several hundreds of servers, printers, network

switches, but also a number of specialized nodes like ATMs,

UPS devices, environment monitoring modules, etc.

We define the service as a tuple (IP address, port number,

transport protocol ID), while the client of a service is defined

as an IP address which is employed for communicating with

the service. In order to distinguish services and clients from

each other and analyze their behavioral patterns, we

preprocessed the collected data set using heuristics described

in subsection IVa. We found that during 150 days, 2,924

services were used by 1,609 clients. When we analyzed the

number of clients the services have on a daily basis, we

discovered that most services are used by only few clients per

day. We calculated an average number of clients per day for

each service, and divided services into non-overlapping groups

by the calculated figure. Table I summarizes our findings.

According to Table I, less than 10% of services have an

average of 5 or more clients per day, while 76.74% of services

TABLE I

SERVICE GROUPS BY THE AVERAGE NUMBER OF CLIENTS PER DAY

Service groups by the

average number of

clients per daya

Number of services

in a group

Average number of

days of service usageb

Services with an average

of 100 or more clients

per day

28 (≈0.96%) 137.21

Services with an average

of at least 25 and less

than 100 clients per day

87 (≈2.98%) 84.32

Services with an average

of at least 10 and less

than 25 clients per day

96 (≈3.28%) 48.11

Services with an average

of at least 5 and less than

10 clients per day

65 (≈2.22%) 99.94

Services with an average

of at least 2 and less than

5 clients per day

404 (≈13.82%) 39.72

Services with an average

of more than 1 and less

than 2 clients per day

648 (≈22.16%) 89.04

Services with an average

of at most 1 client per

day

1,596 (≈54.58%) 25.84

 aClients per day average for each service was calculated for days the

service was active (e.g., if a service was used during 138 days, the average

was found for 138 days)

 bCalculated for services in a given group.

have an average of less than 2 clients per day. When we

investigated services with few clients more closely, we

discovered that a large part of them are specialized services

which are not used by humans. For example, we found that

about 20% of all services are SNMP agents which are accessed

by few dedicated network management nodes. In addition to

SNMP, a number of other protocols are extensively employed

in the private network for system management, for

communications between infrastructure components, etc. In all

such cases the services typically have only 1-2 clients with

well-known IP addresses.

In order to estimate how many network flows are associated

with services which are consistently consumed by larger

number of clients, we investigated the services which are used

by at least 100 clients per day during at least 75 days (half of

the timeframe covered by our NetFlow data set). We identified

28 such services, including corporate web proxies, mail

servers, and name servers. We discovered that 417,771,347

flow records (38.19% of records in the data set) reflect

network traffic from/to them. When we inspected the services

which are used by at least 25 clients per day during at least 75

days, we found 67 services with 691,655,760 flow records

(63.23% of records in the data set) associated with them.

To summarize our findings, majority of the services have

very few clients (often with well-known IP addresses), while

only a small fraction of services are consistently accessed by

many clients. Nevertheless, a large part of collected NetFlow

data describes the network traffic from/to such few popular

services.

We also analyzed the behavior of 1,609 client nodes. We

found that 944 clients (58.67% of clients) consumed services

during at least 120 days (80% of the timeframe covered by the

data set), while 1,193 clients (74.15% of clients) consumed

services during at least 30 days (20% of the timeframe covered

by the data set). 83 clients were active during one day only.

We also calculated an average number of used services per day

for each client, and employed this figure for dividing clients

into non-overlapping groups. Our findings are presented in

Table II.

According to the table, almost 99% of clients are accessing

an average of less than 50 services per day, while for 91.49%

of clients the average number of consumed services remains

below 25 per day. Furthermore, 66% of clients are contacting

an average of less than 5 services per day. When we conducted

a separate analysis for workstation client nodes, we found that

the average number of used services per day ranges from 1 to

53, with the overall average 18.26 across 436 workstations. In

other words, large majority of clients are consuming either few

or moderate number of services each day. Moreover, this

network behavior is also common for workstations, although

human users are often not following the same service usage

pattern on a daily basis. Other researchers have observed a

similar phenomenon for university campus workstations [17].

Finally, we tried to estimate how often clients are accessing

services they have used before. For this purpose, we extracted

the list of all consumed services for each client from the entire

150 day NetFlow data set. We found that only 63 clients

contacted more than 100 services, 336 clients contacted 50-99

services, 150 clients contacted 25-49 services, 88 clients

contacted 10-24 services, and 972 clients contacted less than

10 services. We also found that 692 clients contacted at least

75% of services in their list during 75 days or more. Also, 922

and 1,330 clients used at least 50% and 25% of their services,

respectively, during 75 days or more. These figures suggest

that client nodes are using the same services over longer

periods of time, and if a service has been accessed before, it is

likely to be accessed in the future.

Another interesting phenomenon is that clients often access

services which other clients have recently used, and seldom

establish a connection to a rarely used service. When we

investigated service sharing during 150 days, we discovered

that 1,479-1,559 (91.92%-96.89%) clients contacted only

these services which were also used by at least one other client

during the same day. We have observed similar service sharing

patterns during our previous research – a 2 week experiment

revealed that in 1 hour time windows, 68-94% of workstations

only interacted with services used by at least 4 other nodes

within the same 1 hour window [18].

TABLE II

CLIENT GROUPS BY THE AVERAGE NUMBER OF USED SERVICES PER DAY

Client groups by the

average number of used

services per daya

Number of clients in

a group

Average number of

days of client

activityb

Clients with an average

of 100 or more used

services per day

8 (≈0.50%) 107.25

Clients with an average

of at least 50 and less

than 100 used services

per day

11 (≈0.68%) 91.82

Clients with an average

of at least 25 and less

than 50 used services per

day

118 (≈7.33%) 119.96

Clients with an average

of at least 10 and less

than 25 used services per

day

306 (≈19.02%) 138.11

Clients with an average

of at least 5 and less than

10 used services per day

112 (≈6.96%) 128.25

Clients with an average

of at least 2 and less than

5 used services per day

198 (≈12.31%) 99.77

Clients with an average

of more than 1 and less

than 2 used services per

day

239 (≈14.85%) 99.26

Clients with an average

of at most 1 used service

per day

625 (≈38.84%) 75.70

 aServices per day average for each client was calculated for days the

client was active (e.g., if a client was active during 25 days, the average was

found for 25 days)

 bCalculated for clients in a given group.

IV. ANOMALY DETECTION FOR ORGANIZATIONAL PRIVATE

NETWORKS

In this section, we will present two algorithms for anomaly

detection in organizational private networks. The algorithms

leverage typical traffic patterns and node behavior discussed in

the previous section. Both algorithms employ a service

detection method which discovers TCP and UDP based

network services from NetFlow data sets of recent past (e.g.,

data from last 30 days). This information is used for creating

behavior profiles for each client. Proposed anomaly detection

algorithms use these profiles for near-real-time detection of

anomalous network flows, and for daily detection of node

behavior changes through data clustering. The following

subsections provide a detailed discussion of our algorithms.

A. Service Detection From NetFlow Data

Service detection from NetFlow data sets is a non-trivial

task, because NetFlow records do not contain information

about the initiator of a network connection (see also [6] for a

related discussion). For example, although each NetFlow

record for TCP traffic contains a separate field for the union of

TCP flags observed during the flow, the successful negotiation

of a TCP connection sets SYN and ACK flags for both records

describing the directions of the connection. Since throughout

the rest of the connection both sides can use the same flag

combinations in packet headers, the TCP flags field of the

NetFlow record can’t be employed for distinguishing the

server from the client. Also, connectionless transport protocols

like UDP do not involve any specific negotiations between the

client and server before the actual data transfer. Each NetFlow

record includes the timestamp of the start of the flow

(measured in milliseconds), and it seems tempting to assume

that when two records for a new connection are created, the

flow record with an earlier timestamp reflects the traffic from

client to server. However, quite often the first packet from the

client and the server response are observed within the same

millisecond. Furthermore, during our experiments we have

seen buggy NetFlow implementations which sometimes set

flow timestamps to incorrect values. For these reasons,

comparing the timestamps of two records for a given

connection will not always reliably distinguish a client from a

server. Also, in the case of some UDP based protocols data

travel from client to server only (e.g., SNMP traps and BSD

syslog messages).

In order to address the problem of network service

discovery from NetFlow data, we are using the following

approximate method for finding TCP and UDP based services.

During data set processing, flow records for UDP flows and

for TCP flows with SYN and ACK flags are considered. First

a pass over the data set is made, and a list of service

candidates is created with several heuristic steps which are

applied in the given order (some of these heuristics are also

used by the Nfsight network monitoring tool [6]):

1. If a flow record reflects a communication between

host ip1 port p1 and host ip2 port p2 over transport

protocol proto, with p1 being an unprivileged and

p2 a privileged port (i.e., p1  1024 and p2 < 1024),

consider (ip2, p2, proto) as a candidate.

2. If a flow record reflects a communication between

host ip1 port p1 and host ip2 port p2 over transport

protocol proto, with p1 being an unprivileged and

p2 a predefined unprivileged service port (during

our experiments, we used 5 predefined TCP port

numbers), consider (ip2, p2, proto) as a candidate.

3. If a flow record with timestamp t reflects a

communication from host ip1 port p1 to host ip2

port p2 over transport protocol proto, and during

past processing we have observed a record with an

earlier timestamp t’ (t – d  t’ < t) for

communication from host ip2 port p2 to host ip1

port p1 over proto, consider (ip1, p1, proto) as a

candidate (during the experiments, we have set d

to 120 seconds).

4. If a flow record with timestamp t reflects a

communication from host ip1 port p1 to host ip2

port p2 over UDP, and during past processing we

have not observed a record with an earlier

timestamp t’ (t – d  t’ < t) for communication

from host ip2 port p2 to host ip1 port p1 over UDP,

consider (ip2, p2, UDP) as a candidate.

During the data pass, the number of flow records and the list

of distinct clients associated with each candidate service are

retained in memory (according to section III, most services

have few clients). After this, the second data pass is made, and

several other heuristics are applied to candidate services, in

order to remove false positives and find nodes which run

dynamic services. First, if during the data pass a record is

observed where one endpoint is a service candidate with many

associated flows and clients, and the other endpoint is a

candidate with few associated flows, the latter will be dropped

from the candidate list, since it is very likely to represent the

client side of the connection. Second, if a well-known

portmapper service port (e.g., 135/tcp) of some host has many

associated flows and clients, and there are also many flow

records describing traffic between unprivileged ports of this

host and other nodes, consider unprivileged ports of the host as

service ports. However, during our experiments we found only

few such hosts from daily NetFlow data sets (1-14 hosts per

day). After the second data pass, the refined list of service

candidates will be reported as the list of discovered services.

The service list will serve as input for anomaly detection

algorithms described in the following subsections.

B. Near-Real-Time Detection of Anomalous Network Flows

For detecting anomalous network flows, we have developed

a method which builds service usage profiles for each client

from past NetFlow data sets, and then employs these profiles

for distinguishing anomalous network activity from normal

traffic in near-real-time.

Input: n – mine client profiles and widely used services from NetFlow

 data sets of last n days (D1, …, Dn)

minusage – relative threshold for service usage days

mindays – absolute threshold for service usage days

minclnt – threshold for number of clients of a widely used service

mindays2 – threshold for activity days of a widely used service

Output: {Pc1, …, Pcm} – profiles for all detected clients c1, …, cm

W – the set of widely used services

foreach i  (1, ..., n) do

discover the list of services Si from Di, using the method from

subsection IVa;

 Ci := ;

 foreach s  Si do Ls,i := ; done

loop1:

 foreach r  Di do

 if (rproto = UDP or

 (rproto = TCP and {SYN, ACK}  rflags)) then

 if ((rdstip, rdstport, rproto)  Si) then

 c := rsrcip; s := (rdstip, rdstport, rproto);

 elsif ((rsrcip, rsrcport, rproto)  Si) then

 c := rdstip; s := (rsrcip, rsrcport, rproto);

 else continue to the next step of loop1; fi

 Ls,i := Ls,i  {c};

 if (c  Ci) then Ci := Ci  {c}; Kc,i := {s};

 else Kc,i := Kc,i  {s}; fi

 fi

done

done

foreach c  i
n
=1 Ci do Pc := ; Mc := ; done

foreach i  (1, ..., n) do

 foreach c  Ci do

 foreach s  Kc,i do

 Mc := Mc  {s};

 if (uninitialized(daysc,s)) then daysc,s := 0; fi

 daysc,s := daysc,s + 1;

 done

 if (uninitialized(days2c)) then days2c := 0; fi

 days2c := days2c + 1;

 done

done

foreach c  i
n
=1 Ci do

 foreach s  Mc do

 if (daysc,s / days2c  minusage

 and daysc,s  mindays) then Pc := Pc  {s}; fi

 done

done

W := ;

foreach i  (1, ..., n) do

 foreach s  Si do

 if (uninitialized(days3s)) then days3s := 0; fi

 if (|Ls,i |  minclnt) then days3s := days3s + 1; fi

 done

done

foreach s  i
n
=1 Si do

 if (days3s  mindays2) then W := W  {s}; fi

done

Fig. 1. An algorithm for mining client profiles and widely used

services from NetFlow data sets

The method relies on the observation that if a client has

used a service frequently in the past, the client is likely to use

this service in the future (see section III). Our method mines

service usage profiles from daily NetFlow data sets D1, ..., Dn

of the last n days. We assume that each Di is a set of NetFlow

records Di = {r1, ..., rki}, where each record has a number of

attributes, including proto, srcip, srcport, dstip, dstport, and

flags (the union of TCP flags observed during the lifetime of

the flow). The mining is conducted once in every 24 hours, in

order to update the profiles and adjust to environment changes.

The profile mining algorithm is outlined in Figure 1.

Informally, after clients and services have been detected

from D1, ..., Dn, the profile for each client will be set up which

is a list of frequently used services by this client. A service will

be included in the profile if the client has accessed it at least

during (100*minusage)% of days of client activity (e.g., if the

client has been active during 20 days and minusage is 0.5,

services accessed during 10 days or more are included in the

profile). In addition to this relative threshold, the algorithm

employs an absolute threshold mindays which is convenient

for less active clients (e.g., if mindays is 5 and the client has

been active for 5 days, only services used during all days can

be included in the profile).

However, with this approach not all clients would have

profiles – for example, clients which have been active for less

than mindays days, and previously unseen clients which appear

during near-real-time flow monitoring. Also, during our

experiments we have observed that some clients access

popular services with varying frequency which might leave

these services out from their profiles, and thus trigger false

positives. In order to address these issues, the algorithm

presented in Figure 1 also builds the set of widely used

services W which is employed as a default client profile, and

also for filtering out false positives. A service is included in W

if it is used during at least mindays2 days by at least minclnt

distinct clients per day. The employment of W is motivated by

typical traffic patterns described in section III – clients mostly

communicate with services also used by other nodes, and

access to a popular service is thus likely a normal activity.

For faster execution of the mining algorithm, the sets W, Pci

(client profiles), Ls,i (clients of given services for given days),

Kc,i (services for given clients for given days), and Mc (services

for given clients for all days) have to be kept in memory.

Fortunately, as discussed in section III, for most clients the

number of consumed services remains either moderate or

small. Furthermore, only few services have larger number of

clients per day. Therefore, the aforementioned sets have a

moderate size and fit into memory.

After client profiles and the set of widely used services have

been discovered, this knowledge is employed for classifying

flow records arriving from NetFlow-enabled network devices

(see Figure 2). Since the device might report a flow record

with a slight delay (typically at most few minutes after the

network traffic was observed), the anomaly detection is

accomplished in near-real-time. The algorithm classifies

records for UDP flows and for TCP flows with SYN and ACK

flags (such TCP flows represent successfully established new

TCP connections). Other flow records are regarded as out of

scope. If the flow record describes communication with an

unusual service for a client with the profile, or if neither peer is

recognized as a widely used service, the algorithm reports the

flow as anomalous. This allows for detecting unusual behavior

of clients, but also the appearance of new and potentially

illegal services. In order to avoid large numbers of false

positives when a new widely used legitimate service is

introduced, the administrators can add services to set W

through an external white-list (however, during our

experiments we have not used this measure). Since sets Pc1,

…, Pcm and W mostly contain moderate number of elements,

the algorithm can store them in memory for faster execution.

Input: r – NetFlow record;

{Pc1, …, Pcm} – client profiles;

W – the set of widely used services

Output: 1 if flow record r is anomalous;

0 if flow record r is normal;

-1 if flow record is out of scope of the algorithm

if (rproto  UDP or rproto  TCP or

 (rproto = TCP and {SYN, ACK}  rflags)) then return -1; fi

k1 := rsrcip;

k2 := rdstip;

if (exists(Pk1) and (rdstip, rdstport, rproto)  Pk1) then return 0; fi

if (exists(Pk2) and (rsrcip, rsrcport, rproto)  Pk2) then return 0; fi

if ((rdstip, rdstport, rproto)  W) then return 0; fi

if ((rsrcip, rsrcport, rproto)  W) then return 0; fi

return 1;

Fig. 2. Anomaly detection algorithm for NetFlow records.

Finally, since the algorithm focuses on anomaly detection

for seemingly legitimate traffic, it does not monitor for well-

known malicious network activities which leave specific traces

in NetFlow data (e.g., TCP SYN-FIN scans). Nevertheless,

such malicious traffic can be easily detected by writing simple

filtering conditions for flow records.

C. Monitoring Node Behavior Changes

The method described in the previous subsection is capable

of identifying anomalous data exchanges with services which

are neither frequently accessed by the client nor commonly

used by many other nodes. However, for some clients this

monitoring might not be sufficient enough. For example, if the

node is not a workstation but is rather running dedicated

software which communicates with specific services only,

deviations from normal service usage patterns should be

monitored more closely. Unfortunately, it is quite hard to

establish individual monitoring thresholds for each such node

separately, since their number might be too large. However,

quite often dedicated nodes form larger groups, with group

members having (almost) identical network behavior.

Therefore, the members can be monitored by first identifying a

common behavioral pattern for the whole group, and then

using this as a baseline for each member. In this subsection, we

propose a data clustering algorithm for the detection of such

groups, and a method for using detected clusters for finding

behavior changes of individual nodes. The clustering

algorithm is outlined in Figure 3.

Input: D – NetFlow data set;

 m – minimum number of clients for a frequent service;

 e – distance threshold for the node to be included in a cluster

Output: Descr – the set of cluster descriptions;

Clusters – the set of clusters

S := { services detected from D with method from subsection IVa };

C := { clients of services S detected from D };

foreach c  C do Kc := { services used by client c }; done

foreach s  S do Ls : = { clients which used service s }; done

SF := { s | s  S, |Ls|  m };

Cand := ;

foreach c  C do

 T := { s | s  Kc, s  SF };

 if (|T| > 0) then

 if (uninitialized(counterT)) then counterT := 0; fi

 Cand := Cand  { T }; counterT := counterT + 1;

 fi

done

Cand := { T | T  Cand, counterT  m}

foreach T  Cand do MembersT := ; done

foreach c  C do

 maxd := 0;

 foreach T  Cand do

 if (T  Kc and |T|/|Kc| > maxd and |T|/|Kc|  e) then

 maxd := |T|/|Kc|; R := T; fi

 done

 if (maxd > 0) then MembersR := MembersR  {c}; fi

done

Descr := { T | T  Cand, |MembersT| > 0 }

Members := { c | c  C, T  Descr c  MembersT }

Descr := Descr  {  }

Clusters := { MembersT | T  Descr }

Fig. 3. Node clustering algorithm for NetFlow data.

The algorithm first identifies services which are used by at

least m clients (so called frequent services), and then finds sets

of frequent services which are used by at least m clients. Each

set is regarded as a description of a cluster candidate. After

that, the closest candidate description is found for each client

node, and the node is regarded as a member of this cluster

candidate. The distance d(c, A) between the node c and the

candidate description A is found as follows – if B is the set of

all services node c has used, then d(c, A) = |A|/|B| if A  B, and

d(c, A) = 0 otherwise (note that 0  d(c, A)  1). The algorithm

also uses the distance threshold e during clustering – if the

distance from the node to any candidate description is smaller

than e, the node is assigned to the cluster of outliers. For the

cluster of outliers, we define its description as an empty set of

services. Finally, cluster candidates without any members are

dropped, and remaining candidates are selected as clusters.

Due to the nature of the algorithm, nodes with similar

service usage patterns are assigned to the same cluster. Also,

each cluster description naturally describes the common

service usage pattern for all cluster members. The use of

threshold m ensures that clusters are selected from candidates

representing service usage patterns appearing frequently

enough in the data set. With higher values for distance

threshold e, only these nodes which match the common service

pattern very closely are included in the cluster. If Clusters is a

set of clusters, ClustersC denotes the cluster with the

description C. In order to measure, how well the cluster

description C captures the network behavior of all cluster

members m1, …, mk (mi  ClustersC, |ClustersC| = k), we

define the cluster significance S(ClustersC) as follows:

S(ClustersC) = i
k
= 1 d(mi, C) / k.

In order to use this clustering algorithm for monitoring node

behavior, we run the algorithm at the end of each day, and

compare the clustering for the current day with clustering

results for previous n days. Our method first checks if a given

node has been a member of clusters with high significance

during previous n days, and if the node’s service usage

patterns have been close enough to cluster descriptions. Also,

the method verifies that the number of distinct cluster

descriptions for previous n days is modest, and the average

number of cluster members remains above the given threshold.

Nodes not fulfilling these criteria are dropped from further

consideration, since their network behavior has been either

constantly changing or not similar enough to larger group(s) of

other nodes.

For every remaining node the method verifies that its cluster

description for the current day appears within the list of cluster

descriptions for previous n days. In other words, the algorithm

checks if the current service usage pattern of the node has

already been observed in the past. If this is not the case and the

cluster represents a new service usage pattern, the method

checks if most other nodes in the cluster have consistently

appeared in same clusters with the given node in the past (in

other words, the behavior of the whole group of similar nodes

has changed). If either of these conditions holds, the node

behavior is regarded as normal, and abnormal otherwise.

Formally, for each client node c that is part of the clustering

for the current day, the method applies the following steps

(Clusters denotes the current clustering, and Clusters
1
, …,

Clusters
n
 the clusterings for previous n days). The method is

called NodeBehavior and takes n, minavgD, minavgM,

minavgS, maxclust, thresh and thresh2 as input parameters:

1. Find the cluster description C for node c in

Clusters (i.e., c  ClustersC).

2. If node c has not been active during the previous n

days, terminate the processing and return “out of

scope”. If node c was active for m days i
1
,…,i

m
 (1

 m  n), find cluster descriptions C1, …, Cm and

clusters Clusters
i1

C1, …, Clusters
im

Cm for all m

days for c (c  Clusters
ij

Cj, 1  j  m).

3. Find the average cluster significance AvgS(c) for

node c: AvgS(c) := j
m

= 1 S(Clusters
ij

Cj) / m. Also,

find the average distance AvgD(c) from c to C1,

…, Cm: AvgD(c) := j
m

= 1 d(c, Cj) / m. Finally,

find the average number of cluster members

AvgM(c) for node c: AvgM(c) := j
m

= 1

|Clusters
ij

Cj| / m. If AvgS(c) is smaller than

minavgS, or AvgD(c) is smaller than minavgD, or

AvgM(c) is smaller than minavgM, terminate the

processing and return “out of scope”.

4. Find the number of unique elements u in the list

C1, …, Cm: u := | j
m

= 1 { Cj } |. If u is larger than

maxclust, terminate the processing and return “out

of scope”.

5. If the cluster description C for the current day

appears within the list C1, …, Cm, terminate the

processing and return “normal”.

6. If the cluster description C for the current day does

not belong to the list C1, …, Cm, extract other

nodes from cluster ClustersC. If at least

(100*thresh)% of these nodes appear in at least

(100*thresh2)% of clusters Clusters
i1

C1, …,

Clusters
im

Cm, terminate the processing and return

“normal”; otherwise return “anomalous”.

V. EXPERIMENTS

In order to evaluate the performance of algorithms proposed

in the previous section, we have run prototype

implementations of them in a private backbone network of a

large financial institution (the data for traffic pattern study

presented in section III were obtained from the same

environment). The experiment lasted for 123 days from June

2012 to October 2012, and involved the processing of

801,477,584 NetFlow records.

For near-real-time anomaly detection of network flows, we

used the following input parameter values for daily mining of

client profiles Pc1, …, Pcm and the set of widely used services

W (see Figure 1): n=30, minusage=0.25, mindays=5,

minclnt=50, mindays2=15. In other words, NetFlow data sets

of the last 30 days were mined, and a service was included in

the client profile if it was used during at least 25% of days of

client activity, but no less than 5 days. Services consumed by

at least 50 clients during at least 15 days were regarded as

widely used services. The flow anomaly detector (see Figure

2) was implemented in Perl and was running as a daemon on a

Linux server. As discussed in subsection IVb, the memory

requirements of the detector are modest, and during our

experiments its memory consumption remained under 10MB.

During the experiment of 123 days, the anomaly detector

classified 679,402,649 flow records as normal and 28,976

records as anomalous (remaining records were regarded as

being out of scope). However, almost half of the anomalous

records (13,744) were detected during a single day, while

during other two days 1,805 and 1,752 flows were tagged as

anomalous. For the remaining 120 days the number of

anomalous flows ranged from 2 to 521 (an average of 97.29

flows per day). Since typically few hundred anomalous flows

are reported per day, the human administrator can easily

inspect them. The anomalous flows reported during our

experiment represent a variety of unusual network traffic. For

example, we detected abnormal packets triggered by faults in

device configurations (e.g., SNMP traps sent to wrong

destinations), anomalous end user actions (e.g., print jobs

submitted from a workstation to a wrong printer in another

city), but also unusual system management activity (e.g., SSH

connections to rarely managed devices).

We also implemented the NodeBehavior method for

automated discovery of node groups with common service

usage patterns, and finding deviations from common node

group behavior. For the NodeBehavior method, input

parameter values were n=30, minavgD=0.9, minavgM=5,

minavgS=0.9, maxclust=10, thresh=0.9, and thresh2=0.9. For

daily node clustering (see Figure 3), input parameters were set

as m=10 and e=0.75. During the whole experiment, 1,557

clients were observed, and the algorithm was able to report

normal or anomalous behavior for 485-603 nodes per day (for

remaining nodes, “out of scope” was returned). The number of

detected clusters per day ranged from 57 to 72, and the

number of anomalous nodes from 0 to 21 (an average of 2.08

nodes per day). We discovered that in many cases node

behavior was regarded as anomalous because of an access to

rarely used legitimate service (e.g., an SNMP trap alert was

sent to a network management server, while other similar

nodes did not issue any alerts during the same day). However,

in a number of cases node behavior was regarded anomalous

for not consuming a service used by other nodes in the same

group. For example, this helped to discover nodes which had

stopped sending syslog messages to a central collection point,

or had stopped synchronizing their clocks with a central NTP

server. In other words, the clustering based anomaly detection

is quite useful for finding unusual inactivity of a node.

VI. FUTURE WORK

In this paper, we have presented a study of traffic patterns in

an organizational private network, and have presented two

anomaly detection methods for identifying unusual TCP and

UDP traffic. The methods suggested in this paper can be

extended in several ways. First, other clustering algorithms

with different distance functions could be harnessed for

finding nodes with similar service usage patterns. Second, if

dynamic addressing is used for workstations, IP addresses

can’t be reliably associated with end users who are often

following distinct network usage patterns. For tackling this

issue, a mapping between successfully authenticated users and

workstation IP addresses could be stored in a database, and

this information could be employed for identifying

workstations by username, not by IP address. Third, while

algorithms proposed in this paper focus on client network

behavior, we plan to extend this work with service anomaly

detection (e.g., finding illegitimate clients). Finally, we would

like to investigate the use of other flow attributes (e.g., flow

duration) for anomaly detection purposes.

ACKNOWLEDGMENT

The author wishes to thank SEB Estonia for supporting this

work, and, in particular, Mr. Kaido Raiend, Mr. Ants Leitmäe,

Mr. Andrus Tamm, Dr. Paul Leis, and Mr. Ain Rasva.

REFERENCES

[1] http://www.cisco.com/go/netflow

[2] http://nfsen.sourceforge.net

[3] http://fprobe.sourceforge.net

[4] M. Fullmer and S. Romig, “The OSU Flow-tools Package and Cisco

NetFlow Logs,” Proceedings of 14th USENIX Large Installation

Systems Administration Conference, 2000, pp. 291-303.

[5] C. Gates, M. Collins, M. Duggan, A. Kompanek, M. Thomas, “More

NetFlow Tools: For Performance and Security,” Proceedings of 18th

USENIX Large Installation Systems Administration Conference, 2004,

pp. 121-132.

[6] R. Berthier, M. Cukier, M. Hiltunen, D. Kormann, G. Vesonder, and D.

Sheleheda, “Nfsight: NetFlow-based Network Awareness Tool,”

Proceedings of 24th USENIX Large Installation Systems Administration

Conference, 2010, pp. 119-134.

[7] A. Wagner and B. Plattner, “Entropy Based Worm and Anomaly

Detection in Fast IP Networks,” Proceedings of 14th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprise, 2005, pp. 172-177.

[8] S. Ranjan, S. Shah, A. Nucci, M. Munafò, R. Cruz, and S.

Muthukrishnan, “DoWitcher: Effective Worm Detection and

Containment in the Internet Core,” Proceedings of 26th IEEE

International Conference on Computer Communications, 2007, pp.

2541-2545

[9] A. Kind, M. Ph. Stoecklin, X. Dimitropoulos, “Histogram-Based Traffic

Anomaly Detection,” IEEE Transactions on Network and Service

Management, vol. 6 (2), 2009, pp. 110-121.

[10] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian,

“Anomaly Extraction in Backbone Networks using Association Rules,”

Proceedings of 9th ACM SIGCOMM Internet Measurement Conference,

2009, pp. 28-34.

[11] S. Weigert, M. Hiltunen, and C. Fetzer, “Community-based Analysis of

Netflow for Early Detection of Security Incidents,” Proceedings of 25th

USENIX Large Installation Systems Administration Conference, 2011,

pp. 241-252.

[12] K. Bartoš, M. Grill, V. Krmíček, M. Řehák, and P. Čeleda, “Flow Based

Network Intrusion Detection System using Hardware-Accelerated

NetFlow Probes,” Proceedings of CESNET Conference, 2008, pp. 49-

56.

[13] C. Wagner, J. François, R. State, and T. Engel, “Machine Learning

Approach for IP-Flow Record Anomaly Detection,” Proceedings of 10th

International IFIP TC 6 Conference on Networking, 2011, pp. 28-39.

[14] G. Münz, S. Li, and G. Carle, “Traffic Anomaly Detection Using K-

Means Clustering,” Proceedings of Leistungs-, Zuverlässigkeits- und

Verlässlichkeitsbewertung von Kommunikationsnetzen und Verteilten

Systemen, 4. GI/ITG-Workshop MMBnet 2007.

[15] I. Paredes-Oliva, I. Castell-Uroz, P. Barlet-Ros, X. Dimitropoulos, and J.

Solé-Pareta, “Practical Anomaly Detection Based On Classifying

Frequent Traffic Patterns,” Proceedings of Workshops of 31th IEEE

International Conference on Computer Communications, 2012, pp. 49-

54.

[16] R. Vaarandi, “Mining Event Logs with SLCT and LogHound,”

Proceedings of 11th IEEE/IFIP Network Operations and Management

Symposium, 2008, pp. 1071-1074.

[17] J. McHugh and C. Gates, “Locality: A New Paradigm for Thinking

About Normal Behavior and Outsider Threat,” Proceedings of 2003

New Security Paradigms Workshop, 2003, pp. 3-10.

[18] R. Vaarandi, “Methods for Detecting Important Events and Knowledge

from Data Security Logs,” Proceedings of 10th European Conference

on Information Warfare and Security, 2011, pp. 261-267.

