

Simple Event Correlator - Best Practices for Creating Scalable Configurations

Risto Vaarandi, Bernhards Blumbergs and Emin Çalışkan

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This paper has been accepted for publication at the 2015 IEEE CogSIMA conference, and the final version of the paper is

included in Proceedings of IEEE CogSIMA 2015 (ISBN: 978-1-4799-8015-4)

Simple Event Correlator - Best Practices for Creating

Scalable Configurations

Risto Vaarandi, Bernhards Blumbergs

Department of Computer Science

Tallinn University of Technology

Tallinn, Estonia

Emin Çalışkan

Cyber Security Institute

TÜBİTAK

Kocaeli, Turkey

Abstract—During the past two decades, event correlation has

emerged as a prominent monitoring technique, and is essential

for achieving better situational awareness. Since its introduction

in 2001 by one of the authors of this paper, Simple Event

Correlator (SEC) has become a widely used open source event

correlation tool. During the last decade, a number of papers have

been published that describe the use of SEC in various

environments. However, recent SEC versions have introduced a

number of novel features not discussed in existing works. This

paper fills this gap and provides an up-to-date coverage of best

practices for creating scalable SEC configurations.

Keywords—Simple Event Correlator; event correlation; event

processing; log file analysis

I. INTRODUCTION

During the past two decades, event correlation has become
a prominent monitoring technique in many domains, including
network fault monitoring, system administration, fraud
detection, malicious insider and intrusion detection. Also,
event correlation is one of the cornerstones for achieving better
situational awareness. In order to address event analysis tasks
in various domains, many commercial event correlation
solutions have been created. Since its introduction in 2001 by
one of the authors of this paper [1], Simple Event Correlator
(SEC) has become a widely used open source alternative to
commercial offerings. During the last decade, a number of
papers have been published that describe the use of SEC in
various environments, including academia [2], supercomputing
centers [3–6], financial institutions [7, 8], telecom companies
[8], and military [9]. SEC has been used for a wide range of
purposes, including UNIX server log analysis [2], monitoring
of supercomputer clusters [3–5], research experiments [6],
correlation of large event volumes in centralized logging
infrastructures [7], analysis of various security logs [9–11],
IDS alarm classification [12], and network management [1, 8,
13]. However, many past papers have provided generic
overviews of SEC deployments, and do not cover its advanced
features in sufficient details. Moreover, its recent versions have
introduced a number of new features that existing works have
not discussed. The current paper fills this gap and provides an
up-to-date coverage of best practices for scalable deployment
of SEC. The remainder of this paper is organized as follows –
section II discusses related work, section III presents
recommendations for creating scalable SEC configurations,
and section IV concludes the paper.

II. RELATED WORK

Event correlation has received a lot of attention by many
researchers, and most papers have adopted the following
definition by Jakobson and Weissman [14] – event correlation
is a conceptual interpretation procedure where new meaning is
assigned to a set of events that happen within a predefined time
interval. A number of approaches have been proposed for
correlating events, including rule-based [14], graph-based [15],
codebook-based [16], and Bayes network based [17] methods.
In the industry, event correlation is implemented in most
network management and SIEM frameworks, such as HP
Openview, Tivoli, ArcSight, and AlienVault. In the open
source domain, there are several log monitoring tools with
some event correlation functionality – for example, Swatch
[18] implements event counting and thresholding operations,
while LogSurfer [19] supports pairwise event correlation.
Furthermore, NxLog syslog server [20] directly borrows from
SEC rule language and re-implements some SEC functionality
in its core. ESPER [21] is a development toolkit which allows
for augmenting Java and .NET applications with event
correlation features. The first papers which provided detailed
recommendations on deploying SEC were authored by
Rouillard [2] and Vaarandi [10] a decade ago. The treatment by
Vaarandi and Grimaila [11] is more recent, but does not
address the creation of scalable configurations, and does not
describe the new features of the current major release
(introduced in 2012). In the following section, we will provide
a detailed discussion of these topics.

III. BEST PRACTICES AND RECOMMENDATIONS

From its inception, SEC was designed to be as lightweight
as possible. For this reason, it was implemented as a UNIX tool
which incorporates event matching and parsing, event
processing, and output generation into a single program. SEC
can be used interactively in UNIX shell pipelines, executed as
a daemon (or several daemons), connected to other applications
over FIFOs, pipes, and network sockets, etc. Other design
considerations were platform independence and ease of
installation – since SEC is written in Perl and requires no
additions to a standard Perl installation, it runs on all modern
UNIX and Linux platforms. SEC uses rule-based approach for
event correlation, where rules are arranged into sequences
(rulesets), with each ruleset stored in a separate text file. Input
events can be received from regular files, FIFOs, and standard

input. Input events are typically matched with regular
expressions, but for advanced matching and parsing custom
Perl functions can be defined. SEC has been designed for real-
time event processing only and incoming events are tagged
with timestamps of reception. In order to achieve fast memory-
based read-write data sharing between rules, event correlation
operations, and other SEC entities, SEC has been implemented
as a single-threaded tool. Nevertheless, it is straightforward to
run many SEC instances with independent rulebases on the
same host simultaneously.

A. Joining Rules Into Event Correlation Schemes

A number of web pages and papers provide examples of
one SEC rule which correlates events independently. However,
by using contexts, synthetic events, and other data sharing
measures, several rules can be joined together into more
powerful event correlation schemes. For example, the ruleset in
Fig. 1 has been designed for processing Snort IDS syslog
alarms, in order to detect repeated multifaceted attacks from
the same host. The ruleset assumes the following alarm format:

Oct 25 11:36:06 mysensor snort[12341]: [1:16431:5] SQL
generic sql with comments injection attempt - GET parameter
[Classification: Web Application Attack] [Priority: 1] {TCP}
192.168.17.13:43148 -> 10.12.23.39:80

The rules below are stored in /etc/sec/ids.sec

type=EventGroup

ptype=RegExp

pattern=snort\[\d+\]: \[(\d+:\d+):\d+\] .*\

 \{\w+\} ([\d.]+)(?::\d+)? -> [\d.]+(?::\d+)?

context=!IP_$2_ALARM_$1

count=alias ATTACKER_$2 IP_$2_ALARM_$1; \

 create TRIGGER_$1_$2 120 (unalias IP_$2_ALARM_$1)

init=create ATTACKER_$2

end=delete ATTACKER_$2

desc=attacking host $2

action=event Multifaceted attack from $2

thresh=10

window=120

type=SingleWithThreshold

ptype=RegExp

pattern=Multifaceted attack from ([\d.]+)

desc=multifaceted attacks from $1

action=pipe 'Continuous multifaceted attacks from $1' \

 /bin/mail root@example.com

thresh=5

window=1800

Fig. 1. Ruleset for processing Snort IDS alarms.

In order to start a SEC daemon for processing Snort IDS
alarms that will be appended to /var/log/messages, the
following command line can be used:

/usr/bin/sec --conf /etc/sec/ids.sec --input /var/log/messages
--detach

The first rule depicted in Fig. 1 will match an incoming
Snort IDS syslog alarm with the regular expression which sets
the $1 match variable to alarm ID and $2 match variable to
attacker IP address. For example, if the above example Snort
alarm is observed, match variables will be set as $1=1:16431
and $2=192.168.17.13. The rule will then substitute match
variables in the Boolean expression given with the context

field, and the expression evaluates TRUE if the context
IP_192.168.17.13_ALARM_1:16431 does not exist. If that is
the case, the rule will start an event correlation operation with
the ID <rulefile name, rule offset in rulefile, value of desc
field> which yields </etc/sec/ids.sec, 0, attacking host
192.168.17.13>. The operation expects 10 events within 120
seconds as defined with thresh and window fields of the rule.
After the operation has been initialized, it first creates the
context ATTACKER_192.168.17.13 (according to the init
field). After that, the operation sets up an alias name
IP_192.168.17.13_ALARM_1:16431 for this context as defined
with the count field. The alias will exist for 120 seconds and
will prevent the rule from matching further alarms with this
particular combination of attacker IP and alarm ID. The alias
lifetime is controlled by the trigger context
TRIGGER_1:16431_192.168.17.13 which will expire after 120
seconds and remove the alias. After creating the context and
the alias, the operation sets its event counter to 1.

When further events appear that match the first rule, the
operation ID is calculated, and if the operation with the given
ID does not exist, it is initialized as described above (since the
operation ID contains the attacker IP, there will be a separate
event counting and thresholding operation for each attacker).
However, if the operation exists, it will receive the matching
event and increment its event counter, and also create an alias
for attacker IP and alarm ID, in order to avoid counting further
alarms of same type for the given attacker within 120 seconds.

If some operation has counted 10 alarms within the last 120
seconds, this indicates the use of different attack techniques
from some malicious host within a short time frame. Therefore,
the operation generates the synthetic event Multifaceted attack
from attackerIP (as defined with the action field of the rule),
and consumes further alarms silently until the end of the event
correlation window. Before terminating, the operation will
delete the context ATTACKER_attackerIP (according to rule’s
end field) which will also destroy all alias names associated
with this context, in order to avoid interference with potential
further operations for the same attacker IP. Note that alias
lifetime triggers don’t need removal, since they take no action
for non-existing aliases, and potential future recreation of the
trigger will destroy any previous instance. If the operation has
seen less than 10 alarms for the attacker within the 120 second
window, the operation slides the window forward and
continues. If no events remain in the window after sliding, the
operation terminates.

Synthetic events generated by operations started by the first
rule in Fig. 1 are inserted into input buffer of SEC and treated
similarly to regular input events from /var/log/messages.
Therefore, these events will match the second rule in Fig. 1
which will start a separate counting and thresholding operation
for each attacker IP. If an operation observes 5 events within
1800 seconds for the given attacker, it sends an e-mail warning
about repeated multifaceted attacks to root@example.com.

B. Advanced Event Matching with Perl Functions

Although regular expressions allow for flexible parsing of
input events, they have some limitations. Firstly, apart from
string recognition it is hard to implement other types of

matching, for example, arithmetic filters for numerical fields in
input events. Secondly, regular expressions of different SEC
rules work independently with no data sharing between them.

For instance, the ruleset in Fig. 1 assumes that the attacker
IP is always found in the source IP field of the alarm.
However, a number of attacks manifest themselves through
specific victim responses to attackers. As a result, the
destination IP address field reflects the attacker, for example:

Oct 25 14:19:03 mysensor snort[12341]: [1:2101201:11]
GPL WEB_SERVER 403 Forbidden [Classification: Attempted
Information Leak] [Priority: 2] {TCP} 10.12.23.39:80 ->
192.168.11.229:52466

Unfortunately, it is not straightforward to write a single
regular expression for distinguishing external and home IP
addresses in relevant alarm fields and setting match variables
properly for all scenarios. In order to address complex event
matching and parsing tasks, SEC allows for setting up custom
Perl functions. Since user-defined code often benefits from
external Perl modules, these can be loaded at SEC startup. Fig.
2 presents sample rules for improving the ruleset from Fig. 1.

type=Single

ptype=SubStr

pattern=SEC_STARTUP

context=SEC_INTERNAL_EVENT

desc=load Net::IP module and set $homenet

action=eval %ret (require Net::IP); \

 if %ret () else (logonly Net::IP not found; \

 eval %o exit(1)); \

 lcall %ret -> \

 (sub { $homenet = new Net::IP('10.12.23.32/29'); })

type=EventGroup

ptype=PerlFunc

pattern=sub { if ($_[0] =~ \

/snort\[\d+\]: \[(\d+:\d+):\d+\] .*\

 \{\w+\} ([\d.]+)(?::\d+)? -> ([\d.]+)(?::\d+)?/) { \

 my $ip = new Net::IP($2); \

 if ($ip->Net::IP::overlaps($homenet) \

 == $Net::IP::IP_A_IN_B_OVERLAP) \

 { return ($1, $3); } else { return ($1, $2); } \

} return 0; }

context=!IP_$2_ALARM_$1

count=alias ATTACKER_$2 IP_$2_ALARM_$1; \

 create TRIGGER_$1_$2 120 (unalias IP_$2_ALARM_$1)

init=create ATTACKER_$2

end=delete ATTACKER_$2

desc=attacking host $2

action=event Multifaceted attack from $2

thresh=10

window=120

Fig. 2. Using a Perl function for matching and parsing Snort IDS alarms.

The first rule requires the presence of the --intevents option
in SEC command line which forces the generation of special
synthetic events at SEC startup, restarts, log rotations, and
shutdown. In order to disambiguate these synthetic events from
similarly looking regular input, SEC sets up a temporary
context SEC_INTERNAL_EVENT which exists only during the
processing of these events. The first rule matches the
SEC_STARTUP event (generated at SEC startup) and loads the
Net::IP Perl module. The rule also sets the Perl $homenet
global variable to 10.12.23.32/29. If the module loading fails,
the rule logs a relevant error message and terminates the SEC
process by calling exit(1). The second rule uses a Perl function
for matching IDS alarms which receives the alarm message as

its first parameter. The function matches each alarm with the
regular expression from Fig. 1, but in addition to match
variables $1 and $2, match variable $3 is set to the destination
IP address. Then the overlaps() method from Net::IP module is
used for checking if the source IP address belongs to the home
network (represented by $homenet variable that was set from
previous rule). If that’s the case, the function returns alarm ID
and destination IP, otherwise the function returns alarm ID and
source IP. Outside the function, its return values are mapped to
match variables $1 and $2, and thus the $2 variable always
reflects the attacker IP in the rest of the rule definition.

Perl functions can not only be used as patterns for event
matching and parsing, but also as additional filters in rule
context* fields. For example, the following rule fields match an
SSH login failure syslog event if the connection originates
from a privileged port on the client host (the port number of the
client host is assigned to the $1 match variable, and the
variable is passed to a Perl function for verifying its value is
smaller than 1024):

ptype=RegExp

pattern=Failed [\w.-]+ for \w+ from [\d.]+ port (\d+) ssh2

context=$1 -> (sub { $_[0] < 1024 })

In a similar way, many Perl functions can be defined for
event matching and parsing which share global data structures
(e.g., a hash table of malicious IP addresses). Since including
longer functions in rule definitions might decrease rule
readability, it is recommended to encapsulate such code into
separate Perl modules and load them as depicted in Fig. 2.

C. Using Named Match Variables and Match Caching

When creating larger SEC rulebases with hundreds of rules,
a number of rules might use identical regular expression or Perl
function patterns. However, significant amount of CPU time
could be spent for matching an event repeatedly with the same
pattern. Moreover, the use of numeric match variables (e.g., $1
and $2) assumes that the number of input event fields and their
nature are known in advance, but this is not always the case.
Finally, variable numbering can easily change if the pattern is
modified, making rules harder to maintain. In order to address
aforementioned issues, SEC supports named match variables
and match caching as depicted by a ruleset in Fig. 3. This
ruleset processes Linux iptables firewall syslog events which
contain a number of fieldname-value pairs, for example:

Oct 26 11:05:22 fw1 kernel: iptables: IN=eth0 OUT=
MAC=XXX SRC=192.168.94.12 DST=10.12.23.39 LEN=52
TOS=0x00 PREC=0x00 TTL=60 ID=61441 DF
PROTO=TCP SPT=53125 DPT=23 WINDOW=49640
RES=0x00 SYN URGP=0

Depending on the nature of network traffic, iptables events
can contain a variety of different fields, and writing one regular
expression for all possible field combinations is intractable. On
the other hand, the Perl function in the first rule takes
advantage of iterative regular expression matching, in order to
parse out each fieldname-value pair and store it into a Perl hash
table. Since the function returns a reference to this hash table,
named match variables $+{name} are created from all
fieldname-value pairs in the table. For example, when the

above example event is matched, $+{SRC} and $+{DST}
variables are set to 192.168.94.12 and 10.12.23.39,
respectively, and $+{SYN} is set to 1 (default when fieldname
does not have a value). Therefore, the naming scheme for
match variables is dynamic and fully determined by input data.
After the event has been matched, the result of parsing is stored
in the pattern match cache under the entry IPTABLES (the
match caching is configured with the varmap field of the rule).
Note that the pattern match cache is cleared before processing
each new input event, and thus all cache entries always reflect
parsing results for the currently processed event. Also, each
cache entry is implemented as a Perl hash table which can be
accessed directly from rule context* fields (see Fig. 3).

type=SingleWithThreshold

ptype=PerlFunc

pattern=sub { my(%var); my($line) = $_[0]; \

 if ($line !~ /kernel: iptables:/g) { return 0; } \

 while ($line =~ /\G\s*([A-Z]+)(?:=(\S*))?/g) { \

 $var{$1} = defined($2)?$2:1; \

 } return \%var; }

varmap=IPTABLES

continue=TakeNext

desc=too many blocked packets from IP $+{SRC}

action=logonly

thresh=100

window=120

type=SingleWithThreshold

ptype=Cached

pattern=IPTABLES

context=IPTABLES :> (sub { exists($_[0]->{"SYN"}) && \

 exists($_[0]->{"FIN"}) })

desc=SYN-FIN flood attempt against IP $+{DST}

action=logonly

thresh=100

window=120

Fig. 3. Ruleset for processing Linux iptables firewall events.

Since the continue field of the first rule is set to TakeNext,
all matching input events are passed to the following rule for
further processing. In order to save CPU time, the second rule
matches incoming iptables events by doing a quick lookup for
the IPTABLES entry in the pattern match cache (as specified
with ptype=Cached and pattern=IPTABLES). If this entry is
found, the :> operator in the context field passes a reference to
the entry into a Perl function which verifies the presence of
$+{SYN} and $+{FIN} variables under the entry. If both
variables exist, the rule matches an event, and the $+{DST}
variable in the desc field is set from the IPTABLES entry.

Note that named match variables and match caching are
also supported for regular expression patterns – for example,
the regular expression Connection closed from (?<ip>[\d.]+)
creates match variables $1 and $+{ip} which are both set to an
IP address, and these variables can be cached with the varmap
statement.

D. Arranging rulesets hierarchically

Each SEC ruleset is stored in a separate text file, and rules
from one file are applied to an input event in the order they
have been defined in the file. Also, by default rulesets from
different files are applied independently against each input
event. However, if only few rulesets are relevant for most input
events, the use of larger rulebases involves considerable

performance penalty, since an input event will be potentially
matched against many irrelevant rulesets.

SEC provides several options for addressing this problem.
Firstly, if SEC has been started with the --intcontexts command
line option, reception of any input event will trigger the
creation of a temporary context that reflects the source of this
event (e.g., _FILE_EVENT_/var/log/messages). After all rules
have been applied against the input event, the context is deleted
immediately. If some rules are designed to match events from
specific sources only, such temporary contexts allow for
preventing matching attempts for other sources. For example,
the following rule fields match the regular expression with
input events from /var/log/secure only (square brackets around
_FILE_EVENT_/var/log/secure force the check for the
presence of this context before regular expression matching):

ptype=RegExp

pattern=Connection closed from (?<ip>[\d.]+)

context=[_FILE_EVENT_/var/log/secure]

Also, one user-defined context can be set for multiple
sources. Prior to SEC-2.7.6, _INTERNAL_EVENT context was
always used for all synthetic events, while with more recent
SEC versions cevent and cspawn actions can be employed for
generating synthetic events with custom contexts.

####################

the content of /etc/sec/main.sec

type=Jump

context=[_FILE_EVENT_/var/log/messages]

ptype=PerlFunc

pattern=sub { my(%var); my($line) = $_[0]; \

 if ($line !~ /kernel: iptables:/g) { return 0; } \

 while ($line =~ /\G\s*([A-Z]+)(?:=(\S*))?/g) { \

 $var{$1} = defined($2)?$2:1; \

 } return \%var; }

varmap=IPTABLES

desc=parse and route iptables events

cfset=iptables-events

type=Jump

context=[_FILE_EVENT_/var/log/secure]

ptype=RegExp

pattern=sshd\[\d+\]:

desc=route sshd events from /var/log/secure

cfset=sshd-events

####################

the content of /etc/sec/fw.sec

type=Options

procallin=no

joincfset=iptables-events

type=SingleWithThreshold

ptype=Cached

pattern=IPTABLES

desc=Too many blocked packets to IP $+{DST}

action=logonly

thresh=100

window=120

####################

the content of /etc/sec/sshd.sec

type=Options

procallin=no

joincfset=sshd-events

…

Fig. 4. An example hierarchical ruleset.

Secondly, Jump rules can be used for submitting input
events to specific rulesets for further processing, and rulesets
can be configured to accept input from Jump rules only. Fig. 4
depicts an example for three rulesets which are arranged into
two-level hierarchy.

From the three rulesets presented in Fig. 4, the ruleset from
/etc/sec/main.sec is applied for recognizing input events and
submitting them to two other rulesets which are labeled as
iptables-events and sshd-events. Since both rulesets contain an
Options rule with the procallin=no statement, they will only
accept input events from Jump rules. As a result, the ruleset in
/etc/sec/fw.sec is restricted to receive iptables syslog events
from /var/log/messages which have already been parsed by the
Jump rule. Also, the ruleset in /etc/sec/sshd.sec can only
process SSH daemon syslog events from /var/log/secure.

The above example illustrates that ruleset hierarchies can
significantly reduce cost of event processing if many rules and
rulesets are involved, especially if event parsing is
accomplished in top levels of the hierarchy. In more general
cases, rulesets can be arranged into graph-like structures which
can introduce processing loops. Whenever SEC detects a loop
during matching an event against rules, processing for the
event is terminated.

IV. PERFORMANCE DATA AND CONCLUSION

We have used best practices and recommendations from the
previous section in a production environment for two years.
One of our SEC instances is running on a Linux server and
using a hierarchically arranged rulebase of 375 rules, in order
to correlate syslog events from many production servers.
According to recently collected performance data for 172 days,
this SEC instance has processed 1,636,805,087 events during
14,881,059 seconds (109.9 events per second), and
1,331,412,766 events have been matched by rules. During
event processing, the SEC instance has consumed 448,150
seconds of CPU time on a single core of an Intel Xeon X5650
processor (about 3% of available CPU time on one core).
When we briefly experimented with disabling the hierarchical
rulebase arrangement, the CPU load increased 4-5 times.

Although we have reviewed a number of powerful features
of SEC for creating scalable configurations, many interesting
topics have been left out from this paper due to space
limitations. In particular, we haven’t provided in-depth
discussion on individual rule types, advanced use of contexts
for aggregating and reporting event data, actions for working
with sockets, clock-triggered event correlation schemes, and
integration with other monitoring applications. In order to get a
detailed insight into those issues, the interested reader is
referred to the SEC official documentation and mailing list, but
also to past papers [2, 10, 11].

ACKNOWLEDGMENT

The author of SEC expresses his gratitude to John P.
Rouillard for many great ideas and creative discussions which
have been crucial for developing SEC during the last 15 years.
The authors also thank Mr. Kaido Raiend and Mr. Ain Rasva
for supporting this work.

REFERENCES

[1] Risto Vaarandi, “SEC – a Lightweight Event Correlation Tool,”
Proceedings of the 2002 IEEE Workshop on IP Operations and
Management, pp. 111-115.

[2] John P. Rouillard, “Real-time Logfile Analysis Using the Simple Event
Correlator (SEC),” Proceedings of the 2004 USENIX Large Installation
System Administration Conference, pp. 133-149.

[3] Jeffrey Becklehimer, Cathy Willis, Josh Lothian, Don Maxwell, and
David Vasil, “Real Time Health Monitoring of the Cray XT3/XT4
Using the Simple Event Correlator (SEC),” Proceedings of the 2007
Cray User Group Conference.

[4] Ross Miller, Jason Hill, David A. Dillow, Raghul Gunasekaran, Galen
Shipman, and Don Maxwell, “Monitoring Tools for Large Scale
Systems,” Proceedings of the 2010 Cray User Group Conference.

[5] Jason J. Hill, Dustin B. Leverman, Scott M. Koch, and David A. Dillow
“Determining the health of Lustre filesystems at scale,” Proceedings of
the 2011 Cray User Group Conference.

[6] Byung H. Park, Thomas J. Naughton, Pratul Agarwal, David E.
Bernholdt, Al Geist, and Jennifer L. Tippens, “Realization of User Level
Fault Tolerant Policy Management through a Holistic Approach for
Fault Correlation,” Proceedings of the 2011 IEEE International
Symposium on Policies for Distributed Systems and Networks, pp. 17-
24.

[7] David Lang, “Building a 100K log/sec logging infrastructure,”
Proceedings of the 2012 USENIX Large Installation System
Administration Conference, pp. 203-213.

[8] Risto Vaarandi, “Tools and Techniques for Event Log Analysis,” PhD
Thesis, Tallinn University of Technology, 2005.

[9] Michael R. Grimaila, Justin Myers, Robert F. Mills, and Gilbert L.
Peterson, “Design and Analysis of a Dynamically Configured Log-based
Distributed Event Detection Methodology,” The Journal of Defense
Modeling and Simulation: Applications, Methodology, Technology
01/2012; 9(3), pp. 219-241, 2012.

[10] Risto Vaarandi, “Simple Event Correlator for real-time security log
monitoring,” Hakin9 Magazine 1/2006 (6), pp. 28-39, 2006.

[11] Risto Vaarandi and Michael R. Grimaila, “Security Event Processing
with Simple Event Correlator,” Information Systems Security
Association (ISSA) Journal 10(8), pp. 30-37, 2012

[12] Risto Vaarandi and Karlis Podins, “Network IDS Alert Classification
with Frequent Itemset Mining and Data Clustering,” Proceedings of the
2010 IEEE Conference on Network and Service Management, pp. 451-
456.

[13] Risto Vaarandi, “Platform Independent Event Correlation Tool for
Network Management,” Proceedings of the 2002 IEEE/IFIP Network
Operations and Management Symposium, pp. 907-909.

[14] Gabriel Jakobson and Mark Weissman, “Real-time telecommunication
network management: Extending event correlation with temporal
constraints,” Proceedings of the 1995 IEEE International Symposium on
Integrated Network Management, pp. 290-301.

[15] Boris Gruschke, “Integrated Event Management: Event Correlation
using Dependency Graphs,” Proceedings of the 1998 IFIP/IEEE
International Workshop on Distributed Systems: Operations and
Management, pp. 130-141.

[16] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie, “High
speed and robust event correlation,” IEEE Communications Magazine
34(5), pp. 82-90, 1996

[17] M. Steinder and A. S. Sethi, “End-to-end Service Failure Diagnosis
Using Belief Networks,” Proceedings of the 2002 IEEE/IFIP Network
Operations and Management Symposium, pp. 375-390.

[18] Stephen E. Hansen and E. Todd Atkins, “Automated System Monitoring
and Notification With Swatch,” Proceedings of the 1993 USENIX Large
Installation System Administration Conference, pp. 145-152.

[19] http://www.crypt.gen.nz/logsurfer/

[20] http://nxlog-ce.sourceforge.net/

[21] http://esper.codehaus.org/

