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Abstract:  In  modern  computer  networks  and  IT  systems,  event  logging  is  commonly  used  for 
collecting system health information, in order to ease the system management process. For example,  
many  sites  are  collecting  events  and  network  flow  records  from their  applications,  servers,  and 
network devices over protocols like syslog, SNMP and Netflow, and analyze these data at central 
monitoring  server(s).  Among  collected  data,  many  events  and  records  provide  information  about 
security  incidents.  Unfortunately,  during the last  decade security  logs have grown rapidly  in  size,  
making the manual analysis extremely labor intensive task. This task is further complicated by the 
large number of  irrelevant  records and false  positive  alerts  in  security  logs.  For  this  reason,  the 
development of methods for detecting important events and knowledge from security logs has become 
a key research issue during the recent years. In our paper, we propose some methods for tackling this  
issue in the context of IDS and Netflow logs from an organizational network. The first contribution of  
this  paper is  the study of  important  properties of  IDS and Netflow logs.  We have conducted our 
analysis on a number of production system logs obtained from a large financial institution, and some of 
our findings are supported by results from other researchers. The second contribution of the paper is  
the proposal of several data mining based and heuristic methods for event and knowledge detection 
from security logs.  Our data mining methods are based on frequent itemset mining for identifying 
regularities  in  IDS  alert  sets  and  network  traffic.  These  regularities  are  then  used  for  finding 
unexpected IDS alert patterns and prominent network traffic flows. In this paper, we also discuss the 
implementations of  the proposed methods in  a  production environment,  and provide performance 
estimates for our implementations. We conclude the paper with a short discussion on some promising 
directions for further research.
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1. Introduction

In modern computer networks and IT systems, one of the key security management techniques is  
network  monitoring  for  detecting  unwanted,  malicious or  anomalous  traffic.  Two widely  employed 
methods for  network monitoring are the use of  network intrusion detection system (IDS) and the 
collection of network traffic information with protocols like Netflow or IPFIX. A network IDS sensor 
performs  deep packet inspection (DPI) for a network segment – for every packet that traverses the 
segment,  the  sensor analyzes  both  the  packet  headers  and its  payload.  Most  network  IDSs use 
signature based approach for DPI – human experts write packet matching conditions (signatures), in 
order to recognize known bad traffic (e.g., a signature could be a regular expression for matching the  
packet payload). When network traffic matches a signature, IDS triggers an alert which is typically sent 
to the central network management server. Unfortunately, IDSs are known to generate large volumes 
of  alerts  –  for  example,  a  single  IDS sensor  can  emit  hundreds  of  thousands of  alerts  per  day 
(Vaarandi  and  Podiņš  2010;  Viinikka,  Debar,  Mé,  Lehikoinen  and  Tarvainen  2009).  Furthermore, 
usually the majority of these alerts are false positives or irrelevant (Julisch 2001; Long, Schwartz and 
Stoecklin  2006;  Vaarandi  and  Podiņš  2010).  Therefore,  the  manual  review  of  IDS  logs  is  often  
impossible.

In contrast,  when network traffic information is collected from routers, switches or dedicated network 
probes (with a protocol like Netflow), only data from packet headers are considered. For example, a  
Netflow record contains a transport protocol ID (e.g., 6 for TCP), source and destination IP addresses, 
source and destination ports (if supported by transport protocol), and a few other fields. A Netflow 
record is created when the network device first observes relevant traffic flow (e.g., a TCP connection is 
established from the workstation 10.2.1.13 port 21892 to the web server 10.1.1.1 port 80). Typically,  
the  network  device  sends  the  record  to  the  central  network  management  host  when  activity  or 
inactivity timer expires for the flow (e.g., no packets have travelled from source to destination during 
15 seconds), when the flow table becomes full, or when the flow ends (e.g., the corresponding TCP 
connection is  terminated).  Since collecting network traffic  information does not  involve the packet 



payload  analysis,  it  requires  much less  computing  resources  than  DPI.  However,  since  in  larger  
networks many millions of flow records can be created within a short amount of time (Wagner 2008), 
processing and storing these records is expensive in terms of CPU time and disk space. In order to 
reduce these costs, packet sampling is usually employed in very large networks – traffic information is 
only extracted from a fraction of packets (e.g., 0.1%). Nevertheless, packet sampling is often not used 
in the context of network security monitoring, since this allows for recording all network packet flows 
between peers and thus for the detection of unusual traffic patterns.

In this paper, we will focus on IDS and Netflow log analysis for organizational networks. We will first 
study important properties of IDS and Netflow logs and will show that these data sets are prone to  
contain strong patterns. We will then propose several heuristic and data mining based algorithms for 
analyzing these logs. The remainder of this paper is organized as follows – section 2 describes related 
work,  section  3  focuses on properties  of  IDS and Netflow logs,  section 4  describes log  analysis 
algorithms which harness these properties, and section 5 concludes the paper.

2. Related work

Since IDS and Netflow logs contain large volumes of data and it is highly impractical to review these 
logs  manually,  their  analysis  has  attracted  a  considerable  amount  of  attention  in  the  research 
community. A number of methods have been proposed during the last decade, including machine 
learning (Pietraszek 2004),  time series analysis  (Viinikka,  Debar,  Mé and Séguier  2006;  Viinikka, 
Debar, Mé, Lehikoinen and Tarvainen 2009), the application of EWMA control charts (Viinikka and 
Debar 2004), visualization (Taylor, Paterson, Glanfield, Gates, Brooks and McHugh 2009), the use of 
locality paradigm (McHugh and Gates 2003) and chronicles formalism (Morin and Debar 2003), the 
application  of  game  theory  (Wagner,  Wagener,  State,  Engel  and  Dulaunoy,  2010),  graph  based 
methods (Ning, Cui and Reeves 2002), etc.

Among recently proposed methods, data mining algorithms have been often suggested for IDS alert 
logs.  With  these  methods,  IDS  alert  logs  are  mined  for  previously  unknown  regularities  and 
irregularities. This knowledge is then used by human experts for writing event correlation rules which 
highlight important alerts and filter out large volumes of false positives and other irrelevant alerts.  
Long, Schwartz and Stoecklin have developed a supervised clustering algorithm for distinguishing 
Snort IDS true alerts from false positives (Long, Schwartz and Stoecklin 2006). Treinen and Thurimella 
have investigated the application of association rule mining, in order to detect knowledge for writing 
event correlation rules for novel attack types (Treinen and Thurimella 2006). Clifton and Gengo have 
suggested a similar  approach for  creating IDS alert  filters  (Clifton and Gengo 2000).  Julisch and 
Dacier have proposed a conceptual clustering technique for IDS alert logs (Julisch 2001; Julisch and 
Dacier 2002; Julisch 2003). With this approach, detected clusters correspond to alert descriptions, and 
the human expert can use them for developing filtering and correlation rules for future IDS alerts. Al-
Mamory, Zhang and Abbas have proposed clustering algorithms for finding generalized alarms which 
help the human analyst to build filters (Al-Mamory, Zhang and Abbas 2008; Al-Mamory and Zhang 
2009).  Vaarandi  and  Podiņš  have  developed  a  novel  data  mining  based  method  for  IDS  alert  
classification (Vaarandi and Podiņš 2010). The method fully automates the knowledge interpretation 
process which has been traditionally carried out by human experts, and derives alert classification 
rules without  a  human intervention.  These rules are used for  distinguishing important  alerts  from 
irrelevant ones.

Various data mining methods have also been proposed for the analysis of Netflow logs. Wagner has 
applied entropy measurement techniques to Netflow data, in order to detect worms in fast IP networks 
(Wagner 2008). Paredes-Oliva et al. have employed a frequent itemset mining algorithm for identifying 
traffic  flows  that  are  root-causes  of  network  security  anomalies  (Paredes-Oliva,  Dimitritopoulos, 
Molina, Barlet-Ros and Brauckhoff 2010). Li and Deng have proposed several frequent pattern mining 
algorithms, in order to detect network anomalies (Li and Deng 2010). Also, Vaarandi has proposed 
frequent itemset mining for automated close-to-real-time identification of strong traffic patterns from 
Netflow logs (Vaarandi 2008).



3. Properties of IDS and Netflow logs

During our experiments, we have discovered several important properties of IDS and Netflow logs 
which are confirmed by findings of other researchers. When investigating the properties of IDS alert  
log data, we reviewed the yearly logs of three IDS sensors from a large financial institution. Sensors 
had more than 15,000 signatures and were deployed in different locations (both in intranet and public  
Internet). Two logs contained more than 50 million alerts and one log more than 2 million alerts.

Firstly, we found that majority of the alerts were triggered only by a few signatures – 10 most verbose  
signatures created more than 95% of alerts for two sensors and more than 80% of alerts for one  
sensor. Other researchers have reported similar findings – in (Viinikka, Debar, Mé and Séguier 2006) 
it was found that 5 signatures produced 68% of alerts, while in (Viinikka, Debar, Mé, Lehikoinen and 
Tarvainen 2009) the authors discovered that 7 signatures produced 78% of alerts. Secondly, we found 
that prolific signatures usually trigger large volumes of alerts over longer periods of time. For three  
aforementioned sensors, less than 25 signatures triggered alerts for more than 300 days during 1 year 
period,  and these alerts  constituted 70-90% of  entries in  the logs.  Finally,  vast  majority  of  these 
verbose signatures trigger false positives or irrelevant alerts. In our experimental environment, we 
found that they are mostly related either to well-known threats (such as MS Slammer Sapphire worm) 
or legitimate network traffic (like SNMP queries from network management servers). Similar findings 
have also been reported in (Viinikka, Debar, Mé, Lehikoinen and Tarvainen 2009). Therefore, IDS alert 
logs contain strong patterns in many environments, and these patterns describe commonly occurring 
irrelevant alerts.

For investigating the properties of organizational Netflow logs, we studied the log of a Netflow probe 
that  was  deployed  in  a  backbone  network  of  a  large  financial  institution.  The  probe  collected 
information  about  network  traffic  for  hundreds  of  workstations,  tens  of  servers  and various  other 
devices without packet sampling. The log of the probe covered the period of 14 days and contained 
104,142,530 Netflow records. In order to detect changes in network usage patterns over time, we 
divided the 14 day (336 hour) log into 336 non-overlapping time frames, with each frame covering 1 
hour.  In  the  remainder  of  the  paper,  destination  address denotes  the  following  tuple:  (transport  
protocol ID, destination IP address, destination port). Note that Netflow records for portless transport 
protocols (like ICMP) might use the destination port field for specifying the type of the packet.

Firstly, we noticed that the number of distinct destination addresses is quite large for each time frame 
–  each  frame  contained  an  average  of  309,948  records  and  an  average  of  103,335  destination 
addresses. However, the majority of destination addresses (90-98%, an average of 92.6% per frame) 
were associated with only one source IP address. Also, most such destination addresses appeared 
only in a few records during short period of time. Furthermore, only 47-121 destination addresses had 
20 or more source IP addresses in a frame, but 35-46% of Netflow records represented the network 
traffic to these few destinations. When we investigated these destination addresses more closely, we 
found that they correspond to widely used network services (for example, corporate mail and web 
servers). Due to the large volume of traffic going to these services, strong patterns that reflect this 
traffic show up in Netflow logs.

Secondly, when analyzing the network traffic of workstations, we discovered that a typical workstation 
communicates with a limited number of IP addresses within 1 hour time frame – the average number 
of peer addresses per workstation ranged from 9.8 to 24.7 in 336 frames. Thirdly, we also found that  
many  workstations  often  communicate  only  with  well-known  network  services  which  are 
simultaneously used by several other network nodes. Inspecting 1 hour time frames revealed that 68-
94% of workstations (an average of 88.3% per frame) did only interact with network services used by 
at  least  4  other  nodes  during  the  same  time  frame.  Other  researchers  have  observed  similar 
regularities in workstation network traffic (McHugh and Gates 2003).

These properties of Netflow log data for organizational networks clearly indicate that such logs contain 
strong patterns. Furthermore, these patterns often reflect the use of well-known network services (by 
workstations and other legitimate clients).  For these reasons,  the emergence of new and unusual  
patterns might be a symptom of an anomalous (and possibly malicious) network activity. In addition, 
the discovery of network services from Netflow logs facilitates the identification of illegal services. In 
the following section we will present several algorithms for addressing these issues.



4. Anomaly detection algorithms for Netflow and IDS logs

4.1 Frequent pattern mining from Netflow logs

In order to mine patterns from Netflow logs, we propose a frequent itemset mining based approach. 
Although various frequent itemset mining algorithms have been often suggested for various log types 
(see (Vaarandi 2004) for references), their application for Netflow data sets is fairly novel and we are 
aware of only a few recent works (Vaarandi 2008; Paredes-Oliva, Dimitritopoulos, Molina, Barlet-Ros 
and Brauckhoff 2010; Li and Deng 2010).

Let I = {i1,...,in} be a set of items. If X ⊆  I, X is called an itemset. A transaction is a tuple (tid, X), where 
tid is a transaction identifier and X is an itemset. A transaction database D is a set of transactions, and 
the support of an itemset X is the number of transactions that contain X: supp(X) = |{tid | (tid, Y) ∈ D, 
X ⊆  Y}|. If  s is a support threshold and  supp(X) ≥ s,  X is called a  frequent itemset. Note that if the 
support threshold is specified as a percentage p%, then s = |D|*p/100. If itemset X does not have any 
proper supersets with the same support, X is called a closed itemset. In this paper, we focus on mining 
frequent  closed  itemsets,  since  they  are  a  compact  and  lossless  representation  of  all  frequent 
itemsets. 

For mining patterns from  Netflow logs,  we are using LogHound data mining tool  which has been 
developed for efficient mining of very large logs (Vaarandi 2004). If a Netflow record reflects a flow of 
m network packets between some source and destination transport address, we view this record as a 
set  of  m transactions  with  identical  itemset  {(sourceIP,1),  (sourcePort,2),  (destinationIP,3), 
(destinationPort,4),  (protocol,5)}. In other words, we order the five relevant flow record attributes, in 
order to distinguish identical values of different attributes during the mining. With this representation, 
each itemset  describes a  traffic  pattern,  and the support  of  the itemset  equals  to  the number of 
packets for this pattern. In the rest of the paper, we use the terms pattern and itemset interchangeably. 
Figure 1 depicts some frequent traffic patterns detected with LogHound.

* * 10.16.23.3 162 17
Support: 161657

10.12.47.1 993 * * 6
Support: 166959

10.13.25.14 80 10.11.48.44 1915 6
Support: 1211532

Figure 1: Sample traffic patterns detected with LogHound

The first pattern reveals that 161,657 UDP packets have been sent from various sources to SNMP 
trap collector (port 162/udp) at 10.16.23.3, while the second pattern reflects 166,959 TCP packets sent 
to  various  destinations  from  secure  IMAP  server  (port  993/tcp)  at  10.12.47.1.  The  third  pattern 
indicates that port 1915/tcp at the node 10.11.48.44 has received 1,211,532 TCP packets from the 
web server (port 80/tcp) at 10.13.25.14.

For mining traffic  patterns from Netflow data,  we propose the following framework.  After every  W 
second time interval, frequent closed patterns are detected from the Netflow data of last W seconds 
and stored to disk. The content of the file can be viewed over the web by the security administrators 
for getting a quick overview of most prominent recent network traffic patterns. In addition, for each 
detected pattern the last N pattern files are scanned, in order to detect in how many files the pattern is  
present.  If  the  pattern  has  occurred  in  less  than  K files,  the  pattern  is  highlighted  as  potentially 
anomalous.

We have implemented this framework for analyzing data from a Netflow probe in a backbone network 
of a large financial  institution (see section 3 for the probe deployment details).  We measured the 
algorithm performance during 21 days, with the support threshold set to 1%, W set to 3600 seconds, 
N set  to  96 and  K to 12.  In  other  words,  the algorithm mined patterns once in  every hour,  and 



highlighted each pattern which had occurred in less than twelve 1-hour windows during the last 4 
days. During the experiment, 56-261 patterns were detected (an average of 182.5 per window), and 3-
140 patterns were highlighted (an average of 54.3 per window). All highlighted patterns corresponded 
to system and network management activity which does not occur routinely on everyday basis. Thus 
the algorithm is able to identify unusual strong network traffic patterns.

4.2 Network service detection from Netflow logs

Identification  of  network  services  in  organizational  networks  is  an  important  task.  Firstly,  new 
legitimate services are discovered which eases the configuration management process.  Secondly, 
unexpected or illegal services might be found that violate security policies or have been created with 
malicious intentions (e.g., for leaking data to Internet). Today, network services are often detected with  
dedicated  network/host  scanning  tools  like  Nmap.  However,  scanning  larger  networks  is  time-
consuming and requires a lot of network bandwidth. In addition, scanning is an intrusive technique 
which might alert the illegal service provider. Furthermore, scanning could trigger many alarms in the 
security monitoring system of the organization itself (e.g., host firewalls might report all their ports that 
were scanned). Finally, the illegal service might be protected with a firewall, denying access for known 
security monitoring hosts.

The approach proposed in section 4.1 is able to identify actively used network services which receive  
or send large amounts of network packets. However, in many cases the amount of data sent and  
received by services is modest. For example, during our experiments described in section 4.1 we 
discovered that many services exchanged less packets with clients than the support threshold, and 
thus remained undetected. Unfortunately, lowering the support threshold will substantially increase the 
number of patterns, thus making it hard for the human to spot patterns that correspond to services.  
Furthermore, mining large data sets with very low support thresholds will also increase the CPU and 
memory consumption of the algorithm.

In this section, we propose a non-intrusive algorithm for real-time service detection from Netflow logs. 
The algorithm processes Netflow records immediately  after  their  arrival  to  the network monitoring 
server, and employs the following heuristic – if the destination address is employed for providing an 
actively used service, this address is likely to show up in Netflow logs repeatedly during longer periods 
of time. In contrast, as discussed in section 3, most destination addresses appear only in few records 
during short time.

The algorithm employs memory based lists L0,…,Ln for destination address analysis, where each list is 
allocated for destination addresses with a certain number of associated source IP addresses. For each 
list  Li,  Wi specifies the size of the analysis window in seconds and  Ti the threshold for number of 
sources (Tn is set to infinity; Ti < Ti+1 and Wi ≤ Wi+1, 0 ≤ i < n). These lists allow for treating more widely 
used  destination  addresses  differently  during  the  analysis,  and  are  also  useful  for  the  grouping 
purposes during reporting.

For each incoming Netflow record, the algorithm applies the following steps:
1) extracts the source IP address S and destination address D from the Netflow record,
2) if  D belongs to list  Li,  S is appended to the peer list  PD; if during the last  Wi seconds  Ti distinct 
entries were appended to PD, D is moved to list Li+1,
3) if D is not present in lists L0,…,Ln, D is inserted into list L0 and S is appended to PD.

After short time intervals (e.g., once in a second), the algorithm checks all destination addresses. If the 
destination address D belongs to Li, entries appended to PD more that Wi seconds ago are removed 
for memory saving purposes. Also, if the destination address D belongs to list Li (0 < i ≤ n) and during 
the last  Wi seconds less than Ti-1 distinct entries were appended to  PD,  D is moved to list  Li-1. If the 
destination address D belongs to L0 and during the last W0 seconds no entries were added to PD, D is 
removed from L0.

It is easy to see that if the destination address is actively used by larger number of sources, it will be  
promoted to higher level  lists, while if  the number of active peers decreases, the address will  be  
moved back to lower levels. If the address in  L0  has been without peers for  W0 seconds, it will  be 
dropped from memory. Otherwise it will stay in one of the lists and have a chance for promotion if its  



peer activity increases. If T0 is set to 2, L0 will contain destination addresses with only one associated 
source during the last W0 seconds. Since the majority of destination addresses do not correspond to 
network services and appear briefly in a few records with one source only (see section 3), they will 
only stay in  L0, being dropped shortly after  W0 seconds. Therefore, the algorithm will not consume 
large amounts of memory. 

During our experiments, we have used the value of 3600 seconds for  W0 which represents a good 
tradeoff between low memory consumption and service detection precision. We have also set n to 3, 
W1 to 7200 seconds, both W2 and W3 to 1440 seconds, T0 to 2, T1 to 5, and T2 to 20. In other words, 
we have used four lists for destination addresses with 1 source during 1 hour, with 2-4 sources during 
2 hours, with 5-19 sources during 4 hours, and with 20 or more sources during 4 hours. 

We have configured the algorithm to produce output in several ways:

• a web report is created once in 5 minutes from destinations in lists L1,…,Ln,

• when a new destination is created in L1 or an entry has stayed in L0 for more than K seconds, 
a syslog message is produced about the appearance of new service (we have set K to 86400, 
in order to detect services which have been consistently used by one peer during 1 day).

During the experiment of 14 days, the memory consumption of the algorithm was low as we had 
expected. The L0, L1, L2, and L3 lists remained limited in size and contained 1054-3845, 95-445, 7-75, 
and 45-133 entries, respectively. Also, 6381 syslog messages about the appearance of new services 
were logged. However, 3267 (59%) of them were repeated messages about 656 well-known services 
(in  most  cases,  services  were  rediscovered  after  nightly  peer  inactivity).  Among  remaining  3114 
messages, some were false positives generated by a few network management hosts – since these 
nodes  poll  network  intensively  over  SNMP,  UDP ports  are  sometimes  reused  for  creating  client 
sockets, thus these ports enter the L1 list and are reported. We believe that if service syslog messages 
are correlated further,  their  number  could  be reduced several  times and false positives could  be 
eliminated. 

4.3 Frequent pattern mining from IDS logs

As  discussed  in  section  2,  most  data  mining  based  algorithms  for  IDS  log  analysis  have  been 
developed  for  distinguishing  important  events  from  false  positives  and  other  background  noise. 
However, in their recent works Viinikka, Debar,  Mé et al. have argued that it is equally important to 
detect unanticipated changes in alarm flows (Viinikka, Debar, Mé and Séguier 2006; Viinikka, Debar,  
Mé, Lehikoinen and Tarvainen 2009). Since the algorithm presented in section 4.1 detects unexpected 
strong patterns from Netflow logs, we also propose this algorithm for IDS log analysis. In this section, 
we will briefly describe the experiment results for IDS logs.

Similarly with Netflow logs, after every W seconds the algorithm mines frequent closed patterns from 
the IDS log data of last W seconds. Patterns are both stored to file and used for creating a web report. 
Also, patterns which appear in less than K of last N pattern files are highlighted.

We have applied the algorithm for an IDS sensor of a large financial institution, with the sensor being 
deployed at the outer network perimeter. We measured the algorithm performance during 32 days, 
with the support threshold set to 10,  W set to 3600 seconds,  N set to 96 and  K to 12. During the 
experiment, 5-187 patterns were detected (an average of 22.2 per window), and 0-175 patterns were 
highlighted (an average of 6.4 per window). Figure 2 presents some highlighted alert patterns (for the  
reasons of privacy, IP addresses have been obfuscated).

1:2009414 TCP 10.175.178.182 * 10.1.1.1 80

1:2001219 TCP 10.55.173.56 * * 22

1:474 ICMP 10.37.237.66 – 10.1.1.1 -

Figure 2: Sample highlighted IDS alert patterns



The first  pattern  reflects  the Nkiller2  DOS attack from 10.175.178.182 against  the company web 
server, while the second pattern indicates a horizontal SSH scan from 10.55.173.56. The third pattern 
corresponds to an ICMP echo scan flood from 10.37.237.66 against the company web server. During 
the experiments, we found that the algorithm is able to highlight many strong and unexpected attack 
patterns, and also provide a concise overview of latest attack trends for the security administrator.

5. Conclusion

In this paper, we have presented a study of important properties of IDS and Netflow data sets. We 
have also proposed several algorithms for IDS and Netflow log analysis. 

For  future  work,  we  plan  to  employ  statistical  algorithms  for  measuring  unexpected  changes  in 
supports  of  commonly  occurring  frequent  alert  and  network  traffic  patterns.  We  also  intend  to  
elaborate the service detection algorithm and augment it with event correlation methods. In particular,  
we are considering the creation of Simple Event Correlator (Vaarandi 2006) rules for suppressing 
repeated  service  messages  and  for  verifying  with  specifically  crafted  test  packets  if  destination 
addresses  are  responding  connection  attempts.  Finally,  our  research  agenda  includes  work  on 
workstation traffic anomaly detection, employing some of the methods described in this paper.
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