
Methods for Detecting Important Events and Knowledge from Data Security Logs
Risto Vaarandi
CCD COE, Tallinn, Estonia
risto.vaarandi@ccdcoe.org

Abstract: In modern computer networks and IT systems, event logging is commonly used for
collecting system health information, in order to ease the system management process. For example,
many sites are collecting events and network flow records from their applications, servers, and
network devices over protocols like syslog, SNMP and Netflow, and analyze these data at central
monitoring server(s). Among collected data, many events and records provide information about
security incidents. Unfortunately, during the last decade security logs have grown rapidly in size,
making the manual analysis extremely labor intensive task. This task is further complicated by the
large number of irrelevant records and false positive alerts in security logs. For this reason, the
development of methods for detecting important events and knowledge from security logs has become
a key research issue during the recent years. In our paper, we propose some methods for tackling this
issue in the context of IDS and Netflow logs from an organizational network. The first contribution of
this paper is the study of important properties of IDS and Netflow logs. We have conducted our
analysis on a number of production system logs obtained from a large financial institution, and some of
our findings are supported by results from other researchers. The second contribution of the paper is
the proposal of several data mining based and heuristic methods for event and knowledge detection
from security logs. Our data mining methods are based on frequent itemset mining for identifying
regularities in IDS alert sets and network traffic. These regularities are then used for finding
unexpected IDS alert patterns and prominent network traffic flows. In this paper, we also discuss the
implementations of the proposed methods in a production environment, and provide performance
estimates for our implementations. We conclude the paper with a short discussion on some promising
directions for further research.

Keywords: data mining, security log analysis

1. Introduction

In modern computer networks and IT systems, one of the key security management techniques is
network monitoring for detecting unwanted, malicious or anomalous traffic. Two widely employed
methods for network monitoring are the use of network intrusion detection system (IDS) and the
collection of network traffic information with protocols like Netflow or IPFIX. A network IDS sensor
performs deep packet inspection (DPI) for a network segment – for every packet that traverses the
segment, the sensor analyzes both the packet headers and its payload. Most network IDSs use
signature based approach for DPI – human experts write packet matching conditions (signatures), in
order to recognize known bad traffic (e.g., a signature could be a regular expression for matching the
packet payload). When network traffic matches a signature, IDS triggers an alert which is typically sent
to the central network management server. Unfortunately, IDSs are known to generate large volumes
of alerts – for example, a single IDS sensor can emit hundreds of thousands of alerts per day
(Vaarandi and Podiņš 2010; Viinikka, Debar, Mé, Lehikoinen and Tarvainen 2009). Furthermore,
usually the majority of these alerts are false positives or irrelevant (Julisch 2001; Long, Schwartz and
Stoecklin 2006; Vaarandi and Podiņš 2010). Therefore, the manual review of IDS logs is often
impossible.

In contrast, when network traffic information is collected from routers, switches or dedicated network
probes (with a protocol like Netflow), only data from packet headers are considered. For example, a
Netflow record contains a transport protocol ID (e.g., 6 for TCP), source and destination IP addresses,
source and destination ports (if supported by transport protocol), and a few other fields. A Netflow
record is created when the network device first observes relevant traffic flow (e.g., a TCP connection is
established from the workstation 10.2.1.13 port 21892 to the web server 10.1.1.1 port 80). Typically,
the network device sends the record to the central network management host when activity or
inactivity timer expires for the flow (e.g., no packets have travelled from source to destination during
15 seconds), when the flow table becomes full, or when the flow ends (e.g., the corresponding TCP
connection is terminated). Since collecting network traffic information does not involve the packet

payload analysis, it requires much less computing resources than DPI. However, since in larger
networks many millions of flow records can be created within a short amount of time (Wagner 2008),
processing and storing these records is expensive in terms of CPU time and disk space. In order to
reduce these costs, packet sampling is usually employed in very large networks – traffic information is
only extracted from a fraction of packets (e.g., 0.1%). Nevertheless, packet sampling is often not used
in the context of network security monitoring, since this allows for recording all network packet flows
between peers and thus for the detection of unusual traffic patterns.

In this paper, we will focus on IDS and Netflow log analysis for organizational networks. We will first
study important properties of IDS and Netflow logs and will show that these data sets are prone to
contain strong patterns. We will then propose several heuristic and data mining based algorithms for
analyzing these logs. The remainder of this paper is organized as follows – section 2 describes related
work, section 3 focuses on properties of IDS and Netflow logs, section 4 describes log analysis
algorithms which harness these properties, and section 5 concludes the paper.

2. Related work

Since IDS and Netflow logs contain large volumes of data and it is highly impractical to review these
logs manually, their analysis has attracted a considerable amount of attention in the research
community. A number of methods have been proposed during the last decade, including machine
learning (Pietraszek 2004), time series analysis (Viinikka, Debar, Mé and Séguier 2006; Viinikka,
Debar, Mé, Lehikoinen and Tarvainen 2009), the application of EWMA control charts (Viinikka and
Debar 2004), visualization (Taylor, Paterson, Glanfield, Gates, Brooks and McHugh 2009), the use of
locality paradigm (McHugh and Gates 2003) and chronicles formalism (Morin and Debar 2003), the
application of game theory (Wagner, Wagener, State, Engel and Dulaunoy, 2010), graph based
methods (Ning, Cui and Reeves 2002), etc.

Among recently proposed methods, data mining algorithms have been often suggested for IDS alert
logs. With these methods, IDS alert logs are mined for previously unknown regularities and
irregularities. This knowledge is then used by human experts for writing event correlation rules which
highlight important alerts and filter out large volumes of false positives and other irrelevant alerts.
Long, Schwartz and Stoecklin have developed a supervised clustering algorithm for distinguishing
Snort IDS true alerts from false positives (Long, Schwartz and Stoecklin 2006). Treinen and Thurimella
have investigated the application of association rule mining, in order to detect knowledge for writing
event correlation rules for novel attack types (Treinen and Thurimella 2006). Clifton and Gengo have
suggested a similar approach for creating IDS alert filters (Clifton and Gengo 2000). Julisch and
Dacier have proposed a conceptual clustering technique for IDS alert logs (Julisch 2001; Julisch and
Dacier 2002; Julisch 2003). With this approach, detected clusters correspond to alert descriptions, and
the human expert can use them for developing filtering and correlation rules for future IDS alerts. Al-
Mamory, Zhang and Abbas have proposed clustering algorithms for finding generalized alarms which
help the human analyst to build filters (Al-Mamory, Zhang and Abbas 2008; Al-Mamory and Zhang
2009). Vaarandi and Podiņš have developed a novel data mining based method for IDS alert
classification (Vaarandi and Podiņš 2010). The method fully automates the knowledge interpretation
process which has been traditionally carried out by human experts, and derives alert classification
rules without a human intervention. These rules are used for distinguishing important alerts from
irrelevant ones.

Various data mining methods have also been proposed for the analysis of Netflow logs. Wagner has
applied entropy measurement techniques to Netflow data, in order to detect worms in fast IP networks
(Wagner 2008). Paredes-Oliva et al. have employed a frequent itemset mining algorithm for identifying
traffic flows that are root-causes of network security anomalies (Paredes-Oliva, Dimitritopoulos,
Molina, Barlet-Ros and Brauckhoff 2010). Li and Deng have proposed several frequent pattern mining
algorithms, in order to detect network anomalies (Li and Deng 2010). Also, Vaarandi has proposed
frequent itemset mining for automated close-to-real-time identification of strong traffic patterns from
Netflow logs (Vaarandi 2008).

3. Properties of IDS and Netflow logs

During our experiments, we have discovered several important properties of IDS and Netflow logs
which are confirmed by findings of other researchers. When investigating the properties of IDS alert
log data, we reviewed the yearly logs of three IDS sensors from a large financial institution. Sensors
had more than 15,000 signatures and were deployed in different locations (both in intranet and public
Internet). Two logs contained more than 50 million alerts and one log more than 2 million alerts.

Firstly, we found that majority of the alerts were triggered only by a few signatures – 10 most verbose
signatures created more than 95% of alerts for two sensors and more than 80% of alerts for one
sensor. Other researchers have reported similar findings – in (Viinikka, Debar, Mé and Séguier 2006)
it was found that 5 signatures produced 68% of alerts, while in (Viinikka, Debar, Mé, Lehikoinen and
Tarvainen 2009) the authors discovered that 7 signatures produced 78% of alerts. Secondly, we found
that prolific signatures usually trigger large volumes of alerts over longer periods of time. For three
aforementioned sensors, less than 25 signatures triggered alerts for more than 300 days during 1 year
period, and these alerts constituted 70-90% of entries in the logs. Finally, vast majority of these
verbose signatures trigger false positives or irrelevant alerts. In our experimental environment, we
found that they are mostly related either to well-known threats (such as MS Slammer Sapphire worm)
or legitimate network traffic (like SNMP queries from network management servers). Similar findings
have also been reported in (Viinikka, Debar, Mé, Lehikoinen and Tarvainen 2009). Therefore, IDS alert
logs contain strong patterns in many environments, and these patterns describe commonly occurring
irrelevant alerts.

For investigating the properties of organizational Netflow logs, we studied the log of a Netflow probe
that was deployed in a backbone network of a large financial institution. The probe collected
information about network traffic for hundreds of workstations, tens of servers and various other
devices without packet sampling. The log of the probe covered the period of 14 days and contained
104,142,530 Netflow records. In order to detect changes in network usage patterns over time, we
divided the 14 day (336 hour) log into 336 non-overlapping time frames, with each frame covering 1
hour. In the remainder of the paper, destination address denotes the following tuple: (transport
protocol ID, destination IP address, destination port). Note that Netflow records for portless transport
protocols (like ICMP) might use the destination port field for specifying the type of the packet.

Firstly, we noticed that the number of distinct destination addresses is quite large for each time frame
– each frame contained an average of 309,948 records and an average of 103,335 destination
addresses. However, the majority of destination addresses (90-98%, an average of 92.6% per frame)
were associated with only one source IP address. Also, most such destination addresses appeared
only in a few records during short period of time. Furthermore, only 47-121 destination addresses had
20 or more source IP addresses in a frame, but 35-46% of Netflow records represented the network
traffic to these few destinations. When we investigated these destination addresses more closely, we
found that they correspond to widely used network services (for example, corporate mail and web
servers). Due to the large volume of traffic going to these services, strong patterns that reflect this
traffic show up in Netflow logs.

Secondly, when analyzing the network traffic of workstations, we discovered that a typical workstation
communicates with a limited number of IP addresses within 1 hour time frame – the average number
of peer addresses per workstation ranged from 9.8 to 24.7 in 336 frames. Thirdly, we also found that
many workstations often communicate only with well-known network services which are
simultaneously used by several other network nodes. Inspecting 1 hour time frames revealed that 68-
94% of workstations (an average of 88.3% per frame) did only interact with network services used by
at least 4 other nodes during the same time frame. Other researchers have observed similar
regularities in workstation network traffic (McHugh and Gates 2003).

These properties of Netflow log data for organizational networks clearly indicate that such logs contain
strong patterns. Furthermore, these patterns often reflect the use of well-known network services (by
workstations and other legitimate clients). For these reasons, the emergence of new and unusual
patterns might be a symptom of an anomalous (and possibly malicious) network activity. In addition,
the discovery of network services from Netflow logs facilitates the identification of illegal services. In
the following section we will present several algorithms for addressing these issues.

4. Anomaly detection algorithms for Netflow and IDS logs

4.1 Frequent pattern mining from Netflow logs

In order to mine patterns from Netflow logs, we propose a frequent itemset mining based approach.
Although various frequent itemset mining algorithms have been often suggested for various log types
(see (Vaarandi 2004) for references), their application for Netflow data sets is fairly novel and we are
aware of only a few recent works (Vaarandi 2008; Paredes-Oliva, Dimitritopoulos, Molina, Barlet-Ros
and Brauckhoff 2010; Li and Deng 2010).

Let I = {i1,...,in} be a set of items. If X ⊆ I, X is called an itemset. A transaction is a tuple (tid, X), where
tid is a transaction identifier and X is an itemset. A transaction database D is a set of transactions, and
the support of an itemset X is the number of transactions that contain X: supp(X) = |{tid | (tid, Y) ∈ D,
X ⊆ Y}|. If s is a support threshold and supp(X) ≥ s, X is called a frequent itemset. Note that if the
support threshold is specified as a percentage p%, then s = |D|*p/100. If itemset X does not have any
proper supersets with the same support, X is called a closed itemset. In this paper, we focus on mining
frequent closed itemsets, since they are a compact and lossless representation of all frequent
itemsets.

For mining patterns from Netflow logs, we are using LogHound data mining tool which has been
developed for efficient mining of very large logs (Vaarandi 2004). If a Netflow record reflects a flow of
m network packets between some source and destination transport address, we view this record as a
set of m transactions with identical itemset {(sourceIP,1), (sourcePort,2), (destinationIP,3),
(destinationPort,4), (protocol,5)}. In other words, we order the five relevant flow record attributes, in
order to distinguish identical values of different attributes during the mining. With this representation,
each itemset describes a traffic pattern, and the support of the itemset equals to the number of
packets for this pattern. In the rest of the paper, we use the terms pattern and itemset interchangeably.
Figure 1 depicts some frequent traffic patterns detected with LogHound.

* * 10.16.23.3 162 17
Support: 161657

10.12.47.1 993 * * 6
Support: 166959

10.13.25.14 80 10.11.48.44 1915 6
Support: 1211532

Figure 1: Sample traffic patterns detected with LogHound

The first pattern reveals that 161,657 UDP packets have been sent from various sources to SNMP
trap collector (port 162/udp) at 10.16.23.3, while the second pattern reflects 166,959 TCP packets sent
to various destinations from secure IMAP server (port 993/tcp) at 10.12.47.1. The third pattern
indicates that port 1915/tcp at the node 10.11.48.44 has received 1,211,532 TCP packets from the
web server (port 80/tcp) at 10.13.25.14.

For mining traffic patterns from Netflow data, we propose the following framework. After every W
second time interval, frequent closed patterns are detected from the Netflow data of last W seconds
and stored to disk. The content of the file can be viewed over the web by the security administrators
for getting a quick overview of most prominent recent network traffic patterns. In addition, for each
detected pattern the last N pattern files are scanned, in order to detect in how many files the pattern is
present. If the pattern has occurred in less than K files, the pattern is highlighted as potentially
anomalous.

We have implemented this framework for analyzing data from a Netflow probe in a backbone network
of a large financial institution (see section 3 for the probe deployment details). We measured the
algorithm performance during 21 days, with the support threshold set to 1%, W set to 3600 seconds,
N set to 96 and K to 12. In other words, the algorithm mined patterns once in every hour, and

highlighted each pattern which had occurred in less than twelve 1-hour windows during the last 4
days. During the experiment, 56-261 patterns were detected (an average of 182.5 per window), and 3-
140 patterns were highlighted (an average of 54.3 per window). All highlighted patterns corresponded
to system and network management activity which does not occur routinely on everyday basis. Thus
the algorithm is able to identify unusual strong network traffic patterns.

4.2 Network service detection from Netflow logs

Identification of network services in organizational networks is an important task. Firstly, new
legitimate services are discovered which eases the configuration management process. Secondly,
unexpected or illegal services might be found that violate security policies or have been created with
malicious intentions (e.g., for leaking data to Internet). Today, network services are often detected with
dedicated network/host scanning tools like Nmap. However, scanning larger networks is time-
consuming and requires a lot of network bandwidth. In addition, scanning is an intrusive technique
which might alert the illegal service provider. Furthermore, scanning could trigger many alarms in the
security monitoring system of the organization itself (e.g., host firewalls might report all their ports that
were scanned). Finally, the illegal service might be protected with a firewall, denying access for known
security monitoring hosts.

The approach proposed in section 4.1 is able to identify actively used network services which receive
or send large amounts of network packets. However, in many cases the amount of data sent and
received by services is modest. For example, during our experiments described in section 4.1 we
discovered that many services exchanged less packets with clients than the support threshold, and
thus remained undetected. Unfortunately, lowering the support threshold will substantially increase the
number of patterns, thus making it hard for the human to spot patterns that correspond to services.
Furthermore, mining large data sets with very low support thresholds will also increase the CPU and
memory consumption of the algorithm.

In this section, we propose a non-intrusive algorithm for real-time service detection from Netflow logs.
The algorithm processes Netflow records immediately after their arrival to the network monitoring
server, and employs the following heuristic – if the destination address is employed for providing an
actively used service, this address is likely to show up in Netflow logs repeatedly during longer periods
of time. In contrast, as discussed in section 3, most destination addresses appear only in few records
during short time.

The algorithm employs memory based lists L0,…,Ln for destination address analysis, where each list is
allocated for destination addresses with a certain number of associated source IP addresses. For each
list Li, Wi specifies the size of the analysis window in seconds and Ti the threshold for number of
sources (Tn is set to infinity; Ti < Ti+1 and Wi ≤ Wi+1, 0 ≤ i < n). These lists allow for treating more widely
used destination addresses differently during the analysis, and are also useful for the grouping
purposes during reporting.

For each incoming Netflow record, the algorithm applies the following steps:
1) extracts the source IP address S and destination address D from the Netflow record,
2) if D belongs to list Li, S is appended to the peer list PD; if during the last Wi seconds Ti distinct
entries were appended to PD, D is moved to list Li+1,
3) if D is not present in lists L0,…,Ln, D is inserted into list L0 and S is appended to PD.

After short time intervals (e.g., once in a second), the algorithm checks all destination addresses. If the
destination address D belongs to Li, entries appended to PD more that Wi seconds ago are removed
for memory saving purposes. Also, if the destination address D belongs to list Li (0 < i ≤ n) and during
the last Wi seconds less than Ti-1 distinct entries were appended to PD, D is moved to list Li-1. If the
destination address D belongs to L0 and during the last W0 seconds no entries were added to PD, D is
removed from L0.

It is easy to see that if the destination address is actively used by larger number of sources, it will be
promoted to higher level lists, while if the number of active peers decreases, the address will be
moved back to lower levels. If the address in L0 has been without peers for W0 seconds, it will be
dropped from memory. Otherwise it will stay in one of the lists and have a chance for promotion if its

peer activity increases. If T0 is set to 2, L0 will contain destination addresses with only one associated
source during the last W0 seconds. Since the majority of destination addresses do not correspond to
network services and appear briefly in a few records with one source only (see section 3), they will
only stay in L0, being dropped shortly after W0 seconds. Therefore, the algorithm will not consume
large amounts of memory.

During our experiments, we have used the value of 3600 seconds for W0 which represents a good
tradeoff between low memory consumption and service detection precision. We have also set n to 3,
W1 to 7200 seconds, both W2 and W3 to 1440 seconds, T0 to 2, T1 to 5, and T2 to 20. In other words,
we have used four lists for destination addresses with 1 source during 1 hour, with 2-4 sources during
2 hours, with 5-19 sources during 4 hours, and with 20 or more sources during 4 hours.

We have configured the algorithm to produce output in several ways:

• a web report is created once in 5 minutes from destinations in lists L1,…,Ln,

• when a new destination is created in L1 or an entry has stayed in L0 for more than K seconds,
a syslog message is produced about the appearance of new service (we have set K to 86400,
in order to detect services which have been consistently used by one peer during 1 day).

During the experiment of 14 days, the memory consumption of the algorithm was low as we had
expected. The L0, L1, L2, and L3 lists remained limited in size and contained 1054-3845, 95-445, 7-75,
and 45-133 entries, respectively. Also, 6381 syslog messages about the appearance of new services
were logged. However, 3267 (59%) of them were repeated messages about 656 well-known services
(in most cases, services were rediscovered after nightly peer inactivity). Among remaining 3114
messages, some were false positives generated by a few network management hosts – since these
nodes poll network intensively over SNMP, UDP ports are sometimes reused for creating client
sockets, thus these ports enter the L1 list and are reported. We believe that if service syslog messages
are correlated further, their number could be reduced several times and false positives could be
eliminated.

4.3 Frequent pattern mining from IDS logs

As discussed in section 2, most data mining based algorithms for IDS log analysis have been
developed for distinguishing important events from false positives and other background noise.
However, in their recent works Viinikka, Debar, Mé et al. have argued that it is equally important to
detect unanticipated changes in alarm flows (Viinikka, Debar, Mé and Séguier 2006; Viinikka, Debar,
Mé, Lehikoinen and Tarvainen 2009). Since the algorithm presented in section 4.1 detects unexpected
strong patterns from Netflow logs, we also propose this algorithm for IDS log analysis. In this section,
we will briefly describe the experiment results for IDS logs.

Similarly with Netflow logs, after every W seconds the algorithm mines frequent closed patterns from
the IDS log data of last W seconds. Patterns are both stored to file and used for creating a web report.
Also, patterns which appear in less than K of last N pattern files are highlighted.

We have applied the algorithm for an IDS sensor of a large financial institution, with the sensor being
deployed at the outer network perimeter. We measured the algorithm performance during 32 days,
with the support threshold set to 10, W set to 3600 seconds, N set to 96 and K to 12. During the
experiment, 5-187 patterns were detected (an average of 22.2 per window), and 0-175 patterns were
highlighted (an average of 6.4 per window). Figure 2 presents some highlighted alert patterns (for the
reasons of privacy, IP addresses have been obfuscated).

1:2009414 TCP 10.175.178.182 * 10.1.1.1 80

1:2001219 TCP 10.55.173.56 * * 22

1:474 ICMP 10.37.237.66 – 10.1.1.1 -

Figure 2: Sample highlighted IDS alert patterns

The first pattern reflects the Nkiller2 DOS attack from 10.175.178.182 against the company web
server, while the second pattern indicates a horizontal SSH scan from 10.55.173.56. The third pattern
corresponds to an ICMP echo scan flood from 10.37.237.66 against the company web server. During
the experiments, we found that the algorithm is able to highlight many strong and unexpected attack
patterns, and also provide a concise overview of latest attack trends for the security administrator.

5. Conclusion

In this paper, we have presented a study of important properties of IDS and Netflow data sets. We
have also proposed several algorithms for IDS and Netflow log analysis.

For future work, we plan to employ statistical algorithms for measuring unexpected changes in
supports of commonly occurring frequent alert and network traffic patterns. We also intend to
elaborate the service detection algorithm and augment it with event correlation methods. In particular,
we are considering the creation of Simple Event Correlator (Vaarandi 2006) rules for suppressing
repeated service messages and for verifying with specifically crafted test packets if destination
addresses are responding connection attempts. Finally, our research agenda includes work on
workstation traffic anomaly detection, employing some of the methods described in this paper.

References

Al-Mamory, S.O., Zhang, H. and Abbas, A.R. (2008) “IDS Alarms Reduction Using Data Mining”,
Proceedings of 2008 IEEE World Congress on Computational Intelligence, pp. 3564-3570.
Al-Mamory, S.O and Zhang, H. (2009) “Intrusion Detection Alarms Reduction Using Root Cause
Analysis and Clustering”, Computer Communications, vol. 32(2), pp. 419-430.
Clifton, C. and Gengo G. (2000) “Developing Custom Intrusion Detection Filters Using Data Mining”,
Proceedings of 2000 MILCOM Symposium, pp. 440-443.
Julisch, K. (2001) “Mining Alarm Clusters to Improve Alarm Handling Efficiency”, Proceedings of 2001
Annual Computer Security Applications Conference, pp. 12-21.
Julisch, K. (2003) “Clustering Intrusion Detection Alarms to Support Root Cause Analysis”, ACM
Transactions on Information and System Security, vol. 6(4), pp. 443-471.
Julisch, K. and Dacier, M. (2002) “Mining intrusion detection alarms for actionable knowledge”,
Proceedings of 2002 ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 366-375.
Li, X. and Deng, Z.-H. (2010) “Mining Frequent Patterns from Network Flows for Monitoring Network”,
Expert Systems with Applications, vol. 37(10), pp. 8850-8860.
Long, J., Schwartz, D. and Stoecklin, S. (2006) “Distinguishing False from True Alerts in Snort by Data
Mining Patterns of Alerts”, Proceedings of 2006 SPIE Defense and Security Symposium, pp. 62410B-
1--62410B-10.
McHugh, J. and Gates, C. (2003) “Locality: A New Paradigm for Thinking About Normal Behavior and
Outsider Threat”, Proceedings of 2003 New Security Paradigms Workshop, pp. 3-10.
Morin, B. and Debar, H. (2003) “Correlation of Intrusion Symptoms: an Application of Chronicles”,
Proceedings of 2003 RAID Symposium, pp. 94-112.
Ning, P., Cui, Y. and Reeves, D. S. (2002) “Analyzing Intensive Intrusion Alerts via Correlation”,
Proceedings of 2002 RAID Symposium, pp. 74-94.
Paredes-Oliva, I., Dimitritopoulos, X., Molina, M., Barlet-Ros, P. and Brauckhoff, D. (2010)
“Automating Root-Cause Analysis of Network Anomalies using Frequent Itemset Mining”, Proceedings
of 2010 SIGCOMM Conference, pp. 467-468.
Pietraszek, T. (2004) “Using Adaptive Alert Classification to Reduce False Positives in Intrusion
Detection”, Proceedings of 2004 RAID Symposium, pp. 102-124.
Taylor, T., Paterson, D., Glanfield, J., Gates, C., Brooks, S. and McHugh, J. (2009) “FloVis: Flow
Visualization System”, Proceedings of 2009 Cybersecurity Applications and Technology Conference
for Homeland Security, pp. 186-198.
Treinen, J.J. and Thurimella, R. (2006) “A Framework for the Application of Association Rule Mining in
Large Intrusion Detection Infrastructures”, Proceedings of 2006 RAID Symposium, pp. 1-18.

Vaarandi, R. (2004) “A Breadth-First Algorithm for Mining Frequent Patterns from Event Logs”,
Proceedings of 2004 IFIP International Conference on Intelligence in Communication Systems , pp.
293-308.
Vaarandi, R. (2006) “Simple Event Correlator for real-time security log monitoring”, Hakin9 Magazine,
vol. 1/2006 (6), pp. 28-39.
Vaarandi, R. (2008) “Mining Event Logs with SLCT and LogHound”, Proceedings of 2008 IEEE/IFIP
Network Operations and Management Symposium, pp. 1071-1074.
Vaarandi, R. and Podiņš, K. (2010) “Network IDS Alert Classification with Frequent Itemset Mining and
Data Clustering”, Proceedings of 2010 IEEE Conference on Network and Service Management, pp.
451-456.
Viinikka, J. and Debar, H. (2004) “Monitoring IDS Background Noise Using EWMA Control Charts and
Alert Information”, Proceedings of 2004 RAID Symposium, pp. 166-187.
Viinikka, J., Debar, H, Mé, L., Lehikoinen, A., and Tarvainen, M. (2009) “Processing intrusion detection
alert aggregates with time series modeling”, Information Fusion Journal, vol. 10(4), pp. 312-324.
Viinikka, J., Debar, H., Mé, L., and Séguier, R. (2006) “Time Series Modeling for IDS Alert
Management”, Proceedings of 2006 ACM Symposium on Information, Computer and Communications
Security, pp. 102-113.
Wagner, A. (2008) Entropy-Based Worm Detection for Fast IP Networks, PhD Thesis, Swiss Federal
Institute of Technology.
Wagner, C., Wagener, G., State, R., Engel, T. and Dulaunoy, A. (2010) “Game Theory driven
monitoring of spatial-aggregated IP-Flow records”, Proceedings of 2010 IEEE Conference on Network
and Service Management, pp. 463-468.

