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Abstract—Nowadays, many organizations collect large volumes 

of event log data on a daily basis, and the analysis of collected 

data is a challenging task. For this purpose, data mining 

methods have been suggested in past research papers, and 

several data clustering algorithms have been developed for 

mining line patterns from event logs. In this paper, we 

introduce an open-source tool called LogClusterC which 

implements the LogCluster algorithm for discovering line 

patterns and outliers from event logs. According to our 

performance measurements, LogClusterC compares favorably 

to other publicly available log clustering tools. 

Keywords–event log clustering; mining line patterns from 

event logs; LogCluster algorithm; data clustering; data mining 

I.  INTRODUCTION 

In modern data centers, significant amounts of event log 
data are generated on a daily basis [1]. Since the manual 
review and analysis of larger events logs are infeasible, data 
mining methods have been often suggested for this purpose 
[2-10], with data clustering algorithms being one of the most 
commonly proposed approaches [2, 3, 5-8]. Because event 
logs are often textual and each event is described by a single 
event log line, previously suggested data clustering 
algorithms have been designed for mining line patterns from 
such logs. Detected line patterns (e.g., sshd: Failed password 
for * from * port * ssh2) provide valuable insights into 
commonly occurring event types and can be used for various 
purposes, e.g., the development of log monitoring and event 
correlation rules. Since data clustering algorithms also allow 
for the identification of outlier data points, they are useful for 
highlighting unusual events. 

In our recent paper, we have proposed the LogCluster 
data clustering algorithm and its Perl-based prototype 
implementation for mining line patterns and outliers from 
event logs [2]. Unfortunately, we were only able to conduct 
preliminary experiments for assessing the performance of the 
LogCluster algorithm, while the development of an efficient 
C-based implementation and more detailed experiments were 
identified as future work [2]. The current paper closes this 
research gap and introduces LogClusterC which is an open-
source C-based implementation of the LogCluster algorithm. 
The remainder of the paper is organized as follows – section 
II discusses related work, section III introduces LogClusterC, 
section IV describes our experiments for evaluating its 
performance, and section V outlines future work. 

II. RELATED WORK 

The earliest event log clustering algorithm is SLCT that 
was developed in 2003 [3]. SLCT takes support threshold s 
for its input parameter and mines clusters that contain s or 
more lines. All lines in the same cluster match a common 
line pattern, and a cluster is identified by a set of words with 
their offsets. For example, if the cluster is identified by 
words (Connection, 1), (to, 2), and (broken, 4), lines in this 
cluster correspond to the line pattern Connection to * broken. 
SLCT reports all detected clusters as line patterns to the end 
user. In recent research papers, several shortcomings of 
SLCT have been pointed out – it does not detect wildcard 
tails for line patterns, it is sensitive to shifts in word positions 
and delimiter noise, and lower support thresholds can lead to 
overfitting.  

In order to address these issues, Reidemeister has 
suggested the clustering of line patterns from SLCT with a 
single-linkage clustering algorithm that uses a Levenshtein 
distance function, and deriving a common line pattern for 
each cluster [5]. IPLoM by Makanju is a hierarchical 
clustering algorithm that splits the event log iteratively [6]. 
The first step involves creating partitions for event log lines 
with the same number of words. During the second step, a 
word position with the smallest number of unique words is 
identified in each partition, and each partition is split by the 
word appearing in this position. The third step involves 
further partitioning based on associations between word 
pairs. After these steps, IPLoM derives a common line 
pattern for each partition. 

Another event log clustering algorithm is HLAer by Ning 
et al. [7] which uses the OPTICS clustering method [11]. 
According to the authors, HLAer outperforms SLCT and 
IPLoM on several event logs. In their recent work, Kimura et 
al. [8] have suggested a line pattern mining algorithm for 
event logs which is based on word scoring and employs the 
DBSCAN clustering technique [12]. A leading event log 
management platform Splunk [13] implements a clustering 
algorithm for events in the Splunk database. The algorithm 
uses vector-based distance function for calculating similarity 
between two events, but unlike other methods discussed in 
this section, a common line pattern is not derived for events 
in the same cluster. 

Shortcomings of SLCT have also motivated the 
development of the LogCluster algorithm which is designed 
to find more meaningful patterns than SLCT [2]. LogCluster 



takes the support threshold s for its input parameter, and 
detects frequent words (words that appear in s or more lines) 
and cluster candidates during separate data passes, selecting 
candidates with at least s lines as clusters. Unlike SLCT, 
LogCluster does not consider words with positional 
information.  

For assigning an event log line to a cluster candidate, all 
frequent words from the line are arranged into a sequence in 
the order of appearance, and the line is assigned to the 
candidate which is identified by this sequence of frequent 
words. Also, each cluster candidate contains information 
about the position of infrequent words for all lines that have 
been assigned to this candidate. For example, if the words 
User, logout, and for are frequent, event log lines User 
logout for bob and User logout for john doe are assigned to 
the cluster candidate User logout for *{1,2}. This candidate 
is identified by the sequence (User, logout, for), and the 
wildcard *{1,2} matches one or two words. In addition, the 
LogCluster algorithm supports overfitting mitigation 
heuristics, uses word classes for detecting infrequent words 
with the same format, supports several advanced input 
preprocessing features, and employs sketches for reducing its 
memory footprint.  

During our recent research, we created a publicly 
available Perl-based implementation of LogCluster [2], and 
for comparing its performance to SLCT in a fair way, we 
implemented SLCT in Perl. Our experiments indicated that 
despite several similarities between two algorithms, SLCT 
was 1.28-1.62 times faster than LogCluster [2]. However, we 
were unable to establish whether this performance gap is 
related to the use of Perl or is a genuine weakness of the 
LogCluster algorithm. The following sections describe our 
work that answers this research question. 

 

III. OVERVIEW OF LOGCLUSTERC 

LogClusterC is an open-source C-based implementation 
of the LogCluster algorithm that is publicly available [14] 
under the terms of GNU GPLv2. Similarly to the Perl-based 
implementation of the LogCluster algorithm (it is called 
LogClusterP in the rest of the paper), LogClusterC is a 
UNIX tool which is executed from command line and 
configured with command line options. Apart from some 
experimental features and Perl-specific command line 
options of LogClusterP, LogClusterC is compatible with 
LogClusterP. 

Since the LogCluster algorithm has several design 
similarities to SLCT (such as frequent word based candidate 
generation), LogClusterC borrows some source code and 
data structures from SLCT like sketches, fast Shift-Add-Xor 
string hashing functions [15], and move-to-front hash tables 
[16]. Nevertheless, since LogCluster has a more complex 
cluster candidate generation procedure and has several 
features for addressing the shortcomings of SLCT (such as 
heuristics for mitigating overfitting), the code base of 
LogClusterC is significantly larger.  

 

 

logclusterc --support=30 --input=suricata.log \ 

--lfilter='suricata\[[0-9]+\]: (.+)'  --template='$1' \ 

--wweight=0.5 --outliers=outliers.log 

 

 

 

# detected clusters (reported as line patterns) 

 

ET CINS Active Threat Intelligence Poor Reputation IP  

group *{1,1} [Classification: Misc Attack] [Priority: 2]  

{TCP} *{1,1} -> *{1,1} 

Support : 999 

 

GPL SNMP public access udp [Classification:  

Attempted Information Leak] [Priority: 2] {UDP}  

(10.24.253.130:39734|10.131.49.54:8013|10.48.31.19:8013)  

-> *{1,1} 

Support : 144 

 

ET DOS Possible NTP DDoS Inbound Frequent Un-Authed  

MON_LIST Requests IMPL 0x03 [Classification: Attempted  

Denial of Service] [Priority: 2] {UDP} *{1,1} -> *{1,1} 

Support : 132 

 

GPL DNS named version attempt [Classification: Attempted  

Information Leak] [Priority: 2] {UDP} *{1,1} -> *{1,1} 

Support : 75 

 

ET COMPROMISED Known Compromised or Hostile Host Traffic  

group *{1,1} [Classification: Misc Attack] [Priority: 2]  

{TCP} *{1,1} -> *{1,1} 

Support : 50 

 

ETPRO EXPLOIT Possible Asus WRT LAN Backdoor Command  

Execution [Classification: Attempted Administrator  

Privilege Gain] [Priority: 1] {UDP} *{1,1} -> *{1,1} 

Support : 34 

 

ETPRO DOS Possible RPC Portmapper Scanning  

[Classification: Attempted Denial of Service]  

[Priority: 2] {UDP} *{1,1} -> *{1,1} 

Support : 34 

 

 

 

# sample outlier events from outliers.log 

 

Jun 21 03:53:39 mysensor suricata[30655]: [1:2019137:2]  

ET WEB_SPECIFIC_APPS Possible WP CuckooTap Arbitrary File  

Download [Classification: Web Application Attack]  

[Priority: 1] {TCP} 10.65.9.18:59353 -> 192.168.14.10:80 

 

Jun 21 03:54:00 mysensor suricata[30655]: [1:2020221:4]  

ET WEB_SPECIFIC_APPS WP Generic revslider Arbitrary File  

Download [Classification: Web Application Attack]  

[Priority: 1] {TCP} 10.65.9.18:34488 -> 192.168.14.10:80 

 

Jun 21 03:54:07 mysensor suricata[30655]: [1:2016078:2]  

ET WEB_SPECIFIC_APPS Amateur Photographer Image Gallery  

file parameter Local File Inclusion Attempt  

[Classification: Web Application Attack] [Priority: 1]  

{TCP} 10.65.9.18:45538 -> 192.168.14.10:80 

 

Jun 21 03:54:44 mysensor suricata[30655]: [1:2015494:2]  

ET WEB_SPECIFIC_APPS Wordpress Plugin PICA Photo Gallery  

imgname parameter Local File Inclusion Attempt  

[Classification: Web Application Attack] [Priority: 1]  

{TCP} 10.65.9.18:46615 -> 192.168.14.10:80 

 

Jun 21 03:54:50 mysensor suricata[30655]: [1:2015499:2]  

ET WEB_SPECIFIC_APPS Wordpress Plugin Newsletter data  

parameter Local File Inclusion vulnerability  

[Classification: Web Application Attack] [Priority: 1]  

{TCP} 10.65.9.18:55170 -> 192.168.14.10:80 

 

Jun 21 03:54:56 mysensor suricata[30655]: [1:2014948:4]  

ET WEB_SPECIFIC_APPS WordPress Simple Download Button  

Shortcode Plugin Arbitrary File Disclosure Vulnerability  

[Classification: Web Application Attack] [Priority: 1]  

{TCP} 10.65.9.18:35783 -> 192.168.14.10:80 

 

Jun 21 03:55:01 mysensor suricata[30655]: [1:2014899:6]  

ET WEB_SPECIFIC_APPS Wordpress Plugin Tinymce Thumbnail  

Gallery href parameter Remote File Disclosure Attempt  

[Classification: Web Application Attack] [Priority: 1]  

{TCP} 10.65.9.18:44546 -> 192.168.14.10:80 

 

 

Figure 1.  Example use of LogClusterC for mining an IDS alarm log (for 

the sake of privacy, all sensitive fields like IP addresses are anonymized). 



logclusterc --support=100 --input=switch.log \ 

--lfilter=' (%[^[:space:]]+: .+)' --template='$1' 

 

 

 

# detected clusters (reported as line patterns) 

 

%LINEPROTO-5-UPDOWN: Line protocol on Interface *{1,1}  

changed state to up 

Support : 1,494 

 

%LINEPROTO-5-UPDOWN: Line protocol on Interface *{1,1}  

changed state to down 

Support : 1,408 

 

%LINK-3-UPDOWN: Interface *{1,1} changed state to up 

Support : 1,261 

 

%LINK-3-UPDOWN: Interface *{1,1} changed state to down 

Support : 1,174 

 

%DOT1X-5-SUCCESS: Authentication successful for client  

*{1,1} on Interface *{1,1} AuditSessionID *{1,1} 

Support : 717 

 

%ETHPORT-5-IF_TX_FLOW_CONTROL: Interface *{1,1} operational  

Transmit Flow Control state changed to on 

Support : 128 

 

%ETHPORT-5-IF_DUPLEX: Interface *{1,1} operational duplex  

mode changed to Full 

Support : 128 

 

%ETHPORT-5-IF_RX_FLOW_CONTROL: Interface *{1,1} operational  

Receive Flow Control state changed to on 

Support : 122 

 

 

 

# SEC rule for detecting conditions where a switch interface  

# has been down for longer than 10 seconds, and alerting the 

# network administrator via e-mail 

 

type=PairWithWindow 

ptype=RegExp 

pattern=^[[:alpha:]]{3} [\d ]\d \d\d:\d\d:\d\d ([\w.-]+) \ 

.*: %LINK-3-UPDOWN: Interface ([\w\/]+), changed state to down 

desc=Interface $2 on switch $1 has been down for 10 seconds 

action=pipe '%s' mail -s 'Interface failure' root@example.com 

ptype2=RegExp 

pattern2=^[[:alpha:]]{3} [\d ]\d \d\d:\d\d:\d\d $1 \ 

.*: %LINK-3-UPDOWN: Interface $2, changed state to up 

desc2=Interface %2 on switch %1 has come up within 10 seconds 

action2=logonly 

window=10 

 

Figure 2.  Example use of LogClusterC for discovering common event 

types from Cisco network switch logs, and a SEC event correlation rule 

example which has been derived from detected patterns. 

 
Unlike SLCT, LogClusterC stores cluster candidates into 

prefix tree if the algorithm is executed with the support 
aggregation heuristic, in order to reduce the computational 
cost of the heuristic (in contrast, SLCT uses less efficient 
move-to-front hash table). Other differences with SLCT code 
base include support for the unique features of the 
LogCluster algorithm such as word classes and word weight 
functions. Finally, LogClusterC also provides several 
command line options for advanced output formatting and 
debugging which are not supported by SLCT. 

Fig. 1 displays an example application of LogClusterC 
for the Suricata IDS alarm log. In this example, support 
threshold was set to 30 with the --support option, while 
the --lfilter and --template options were employed for 
removing the syslog timestamp, IDS sensor name, and syslog 
tag from each IDS alarm. With the --wweight option, cluster 
joining heuristic was enabled that is based on the concept of 
a word weight (see [2] for more details). The second line 
pattern in Fig. 1 represents a joint cluster created by this 

heuristic, and corresponds to SNMP probing alarms for UDP 
peers 10.24.253.130:39734, 10.131.49.54:8013, and 
10.48.31.19:8013. LogClusterC was also configured to 
detect outlier events with the --outliers option, and Fig. 1 
displays some example outliers which correspond to a 
sophisticated attack from host 10.65.9.18. The attack was 
conducted against an institutional web server and triggered a 
number of unusual IDS alarms. As Fig. 1 illustrates, 
LogClusterC can help the security analyst to quickly identify 
common (often botnet-related) attack and network probing 
patterns, and also discover rare and more elaborate 
individual attacks.  

The use of LogClusterC is not limited to security logs 
and the analysis of security incidents, but it can be applied to 
any event log type for various other purposes. Fig. 2 depicts 
a LogClusterC usage example for finding frequent event 
types from Cisco network switch logs, in order to employ 
detected knowledge for building event correlation rules for 
network fault management. In this example, the --lfilter 
and --template options were used for dropping the prefix 
from each log message which consists of timestamp and 
network switch name, focusing on message text during the 
mining process. Each detected line pattern represents a 
common event type and can be easily converted into a 
regular expression or other format that is supported by a 
dedicated event correlation tool. For example, Fig. 2 presents 
a SEC (Simple Event Correlator) [17] rule which uses 
regular expressions derived from the third and fourth line 
pattern detected by LogClusterC (the event correlation rule 
alerts the network administrator if an interface goes down on 
a switch and does not come up within 10 seconds). 

The following section will discuss experiments for 
evaluating the performance of LogClusterC that were 
conducted on supercomputer logs. 

 

IV. PERFORMANCE OF LOGCLUSTERC 

In order to evaluate the performance of LogClusterC and 
compare it to other log clustering algorithms, we selected 
seven publicly available log files from the USENIX 
Computer Failure Data Repository [18] that are described in 
Table I. All experiments were conducted on a notebook 
running Ubuntu 16.04 Linux with Intel Core i5-3230M 
2.6GHz processor, 8GB of memory, and 180GB SSD disk. 

 

TABLE I.  LOG FILES USED DURING EXPERIMENTS 

Log file Description Size 

(MB) 

Size  (# of 

lines) 

Cray_A Cray XT logs, data set 6 20.86 379,457 

Cray_B Cray XT logs, data set 4 52.12 958,075 

Cray_C Cray XT logs, data set 1 172.72 3,170,514 

BGL HPC4 BlueGene/L 

supercomputing system logs 

708.76 4,747,963 

LBR HPC4 Liberty supercomputing 

system logs 

30,235.34 265,569,231 

TDB HPC4 Thunderbird 

supercomputing system logs 

30,386.44 211,212,192 

SPT HPC4 Spirit supercomputing 

system logs 

38,236.88 272,298,969 



  

TABLE II.  PERFORMANCE COMPARISON FOR LOGCLUSTERC (LCC), SLCT, AND LOGCLUSTERP (LCP) 

Row 

# 

Log file Support 

threshold 

LCC 

runtime 

in 

seconds 

SLCT 

runtime 

in 

seconds 

LCP 

runtime in 

seconds 

LCC 

memory 

usage in 

kilobytes 

SLCT 

memory 

usage in 

kilobytes 

LCP 

memory 

usage in 

kilobytes 

# of clusters 

(candidates) 

detected by 

LCC/LCP 

# of clusters 

(candidates) 

detected by 

SLCT 

1 Cray_A 1,897 1.25  1.30 10.83 27,432 26,792 226,068 0 

(63,876) 

0 

(53,615) 

2 Cray_A 379 1.28  1.33 11.31 34,012 37,064 281,332 27 

(81,044) 

29 

(79,280) 

3 Cray_A 200 1.35 1.41 12.37 63,396 65,664 543,768 13 

(151,707) 

16 

(150,299) 

4 Cray_B 4,790 2.82 2.91 26.14 8,816 5,384 29,304 32 

(5,700) 

32 

(910) 

5 Cray_B 958 3.38 3.06 32.08 162,512 13,504 1,451,208 10 

(382,322) 

10 

(15,667) 

6 Cray_B 200 3.31 3.47 33.79 193,156 180,676 1,684,240 323 

(465,187) 

323 

(412,317) 

7 Cray_C 15,852 9.25 9.48 86.09 9,900 8,028 39,164 26 

(8,622) 

26 

(1,011) 

8 Cray_C 3,170 10.79 10.85 104.12 437,320 371,532 3,953,568 44 

(1,046,947) 

44 

(836,461) 

9 Cray_C 200 11.07 11.84 112.18 612,836 636,884 5,499,112 2,044 

(1,501,118) 

2,045 

(1,500,167) 

10 BGL 23,739 47.21 48.12 200.03 518,932 527,668 1,153,120 55 

(4,160) 

58 

(1,890) 

11 BGL 4,747 46.68 50.42 207.14 517,404 527,720 1,153,796 162 

(34,844) 

162 

(17,213) 

12 BGL 200 48.13 51.77 224.26 517,488 527,720 3,026,716 813 

(543,035) 

814 

(538,370) 

13 LBR 1,327,846 1,492.73 1,577.71 11,046.43 1,176,496 1,211,888 2,788,732 36 

(93,010) 

36 

(54,573) 

14 LBR 265,569 1,498.97 1,568.70 11,156.85 1,178,340 1,212,008 2,789,600 274 

(165,197) 

274 

(111,536) 

15 LBR 200 2,767.77 2,975.33 23,221.76 2,024,736 2,020,552 6,933,324 5,738 
(7,406 / 

7,505) 

5,738 
(7,386) 

16 TDB 1,056,060 1,618.85 1,669.96 9,252.64 1,927,992 1,975,816 4,555,400 6 

(197,847) 

9 

(85,862) 

17 TDB 211,212 1,643.49 1,665.39 9,774.04 1,928,104 1,977,588 5,751,584 22 

(1,126,218) 

28 

(913,546) 

18 TDB 200 2,770.25 2,942.97 19,945.70 2,341,996 2,350,680 7,135,324 1,683 

(3,292 /  
3,272) 

1,728 

(3,314) 

19 SPT 1,361,494 1,792.52 1,884.23 13,740.50 1,045,092 1,055,016 2,503,904 39 

(110,722) 

39 

(50,506) 

20 SPT 272,298 1,816.48 1,906.76 13,955.47 1,043,228 1,054,824 2,507,108 122 
(407,835) 

123 
(325,568) 

21 SPT 200 3,657.80 3,849.74 31,970.67 2,090,548 2,076,108 7,620,424 164,776 

(237,505 / 
237,420) 

164,776 

(237,083) 

 
 
 
From clustering methods discussed in section II, we were 

unable to test IPLoM, HLAer, and algorithms by 
Reidemeister and Kimura et al., since their implementations 
are not publicly available. Therefore, C-based 
implementation of SLCT (version 0.05) [19] and 
LogClusterC (version 0.05) were evaluated. Both SLCT and 
LogClusterC were compiled with gcc, using the –O2 option 
(optimize for speed). We also included LogClusterP (version 
0.08) in all tests, in order to compare its performance with 
LogClusterC. 

The experiment results are provided in Table II. When 
clustering each log file from Table I, we measured the 
runtime, CPU time and memory consumption, and the 
number of detected clusters and cluster candidates. Since 
consumed CPU times were closely matching runtimes, we 
have omitted CPU times from Table II. In the table, LCC and 
LCP denote LogClusterC and LogClusterP respectively. 
Also, two rightmost columns present the number of detected 
clusters, with the number of cluster candidates given in 
parentheses. 



When evaluating LogClusterC, SLCT, and LogClusterP, 
we clustered each log file from Table I with relative support 
thresholds 0.5% and 0.1% (i.e., setting the support threshold 
to 0.5% and 0.1% of the number of event log lines). We also 
clustered log files with the support threshold of 200 that 
corresponds to relative thresholds 0.05271-0.00007% for log 
files in Table I. The employment of such a low threshold 
allowed for imposing heavier workloads on tested 
algorithms, since it leads to the generation of a larger number 
of frequent words and cluster candidates. When executing all 
implementations with this input parameter setting, the 
clustering of LBR, TDB, and SPT log files required 
significant amounts of memory, and implementations run out 
of RAM in several cases. For this reason, we enabled sketch 
based memory optimization techniques for LogClusterC, 
SLCT, and LogClusterP when LBR, TDB, and SPT log files 
were mined with support threshold 200 (experiments 
described by rows 15, 18, and 21 in Table II). Although 
implementations use the sketches in the same manner for 
filtering out cluster candidates with insufficient support 
[2, 3], the number of remaining candidates may easily differ 
for LogClusterC and LogClusterP as data from rows 15, 18, 
and 21 also illustrate.  

Table II reveals several interesting phenomena that we 
observed when clustering log files from Table I. Firstly, we 
expected LogClusterC to consume more memory than 
SLCT, since during the experiments LogClusterC detected 
on average 3.05 times more candidates than SLCT. Also, the 
LogCluster algorithm has a more complex candidate 
generation procedure and requires more bytes for storing a 
candidate than SLCT. However, apart from the experiment 
depicted by row 5, the memory footprint of LogClusterC 
remained comparable to SLCT and was even slightly smaller 
in a number of cases. As the main reason, our investigation 
revealed the smaller memory consumption of LogClusterC 
during frequent word detection. Unlike SLCT, the 
LogCluster algorithm does not need to maintain several 
occurrence counters for the same word that appears in 
different positions. For example, during our experiments 
LogClusterC created on average 15.36% less counters which 
outweighed its larger memory footprint during candidate 
generation. The only exception is the experiment in row 5, 
where LogClusterC detected 24.40 times more candidates 
and therefore required 12.03 times more memory than 
SLCT. 

Table II also indicates that apart from the experiment in 
row 5, LogClusterC was slightly faster than SLCT, requiring 
on average 3.65% less runtime. These results were 
unexpected, since the candidate generation procedure is more 
expensive for the LogCluster algorithm, and it detected more 
candidates during the experiments. When investigating this 
phenomenon, we found that SLCT needs to spend additional 
CPU time for encoding word position information into 
words. Also, word position information adds four bytes to 
internal representation of each word, creating additional 
work for the word hashing function. Although word position 
encoding and word hashing are implemented with fast 
bitwise and integer operations in SLCT implementation, the 
extra work will nevertheless have to be spent on every word 

during all data passes. On larger data sets, this effort can 
easily consume more CPU time than the more complex 
candidate generation procedure of the LogCluster algorithm. 
When we created an experimental SLCT version with word 
position encoding disabled, it outperformed LogClusterC in 
terms of runtime. 

The experiment results and their analysis indicates that 
C-based implementations of LogCluster and SLCT 
algorithms have comparable runtime and memory usage, and 
the LogCluster algorithm does not have significant 
performance weaknesses when compared to SLCT. 
However, as discussed in [2], LogCluster is able to discover 
more refined and meaningful line patterns which is a clear 
advantage over SLCT. 

Finally, according to Table II, LogClusterC was on 
average 7.82 times faster and consumed on average 4.92 
times less memory than LogClusterP. We also compared the 
performance of LogClusterC and LogClusterP for log files 
from Table I with overfitting mitigation heuristics enabled, 
and found that the performance gap between two 
implementations widened further. Therefore, LogClusterC 
offers significant performance benefits over LogClusterP, 
especially when larger log files need to be mined in a fast 
and memory-efficient way. 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have introduced the LogClusterC event 
log mining tool and described a number of experiments for 
evaluating its performance against other publicly available 
log clustering tools. The experiments have revealed that 
LogClusterC compares favorably to other algorithms and 
tools, and is able to efficiently mine large event logs. 

As for the future work, we plan to investigate 
opportunities to modify the LogCluster algorithm for stream 
mining scenarios. Another promising research direction is 
the visualization of clusters detected by LogClusterC. We 
also plan to study methods for automatic selection of the 
support threshold input parameter. Finally, our future 
research includes the use of the LogCluster algorithm in 
distributed computing environments. 
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