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Abstract 
This thesis discusses the problems of event correlation and data mining in the 
context of event log analysis, and presents novel tools and techniques for 
addressing these problems. Event logs play an important role in modern IT 
systems, since they are an excellent source of information for monitoring the 
system in real-time and for conducting retrospective event analysis.  

Event correlation is one of the most prominent event processing techniques 
today. It has received a lot of attention in the context of network fault 
management over the past decade, and is becoming increasingly important in 
other domains as well, including event log analysis. A number of approaches 
have been proposed for event correlation, and a number of event correlation 
products are available on the market. Unfortunately, existing products are 
mostly expensive, platform-dependent, and heavyweight solutions that have 
complicated design, being therefore difficult to deploy and maintain, and 
requiring extensive user training. For these reasons, they are often unsuitable for 
employment in smaller IT systems and on network nodes with limited 
computing resources. 

Data mining techniques are a common choice for knowledge discovery from 
event logs, and the mining of patterns from event logs has been identified as an 
important system and network management task. Recently proposed mining 
approaches for accomplishing this task have often been based on some well-
known algorithm for mining frequent itemsets, and they have focused on 
detecting frequent event type patterns. However, existing approaches have 
several shortcomings. Firstly, many of the proposed algorithms are variants of 
the Apriori algorithm which is inefficient for mining longer patterns. Secondly, 
recent research has concentrated on detecting frequent patterns, but the 
discovery of infrequent patterns is equally important, since this might reveal 
anomalous events that represent unexpected behavior of the system. 
Unfortunately, data clustering methods that can tackle this problem have seldom 
been applied for mining patterns from event logs. Thirdly, existing algorithms 
mostly focus on finding event type patterns, ignoring patterns of other sorts. In 
particular, the mining of line patterns provides the user a valuable insight into 
event logs, but this issue has received very little attention so far. 

In order to address the problems described above, this thesis proposes novel 
tools and techniques for event log analysis. The main contributions of this thesis 
are the following: 

� the development of Simple Event Correlator (SEC) that demonstrates the 
efficiency of a lightweight, platform independent, and open-source event 
correlator for monitoring event logs and processing event streams, 

� the proposal of a novel data clustering algorithm for mining patterns from 
event logs, 

� the proposal of a novel frequent itemset mining algorithm for mining 
frequent patterns from event logs. 
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Kokkuvõte 
Käesolev väitekiri käsitleb sündmuste logide analüüsiga seotud sündmuste 
korrelatsiooni ja andmekaevandamise probleeme ning tutvustab uudseid 
vahendeid ja tehnikaid nende probleemide lahendamiseks. Sündmuste logid 
mängivad tänapäeva infosüsteemides tähtsat rolli, sest neis leiduv info on 
äärmiselt oluline süsteemi monitooringuks reaalajas ning juba toimunud 
sündmuste hilisemaks põhjalikumaks analüüsiks. 

Sündmuste korrelatsioon on üks tähtsamaid sündmuste töötlemise tehnikaid, 
mida on viimase kümnekonna aasta jooksul võrguhalduse kontekstis põhjalikult 
uuritud ning mis on muutumas järjest olulisemaks ka teistes valdkondades, 
kaasa arvatud logide analüüs. Sündmuste korrelatsiooniks on välja pakutud 
mitmeid lähenemisi ning on loodud terve hulk tarkvaratooteid. Kahjuks on 
olemasolevad tooted kallid, platvormist sõltuvad ning keeruka ülesehitusega 
lahendused, mille tõttu nende installeerimine ja hooldus pole lihtsad ülesanded 
ning nende kasutamine nõuab mahukat koolitust. Seetõttu on nad sageli 
ebasobivad rakendamiseks väiksemates infosüsteemides ning piiratud 
arvutusvõimsusega võrgusõlmedes. 

Teadmiste otsimiseks sündmuste logidest rakendatakse tihti 
andmekaevandamise tehnikaid ning logidest mustrite otsimine on oluline 
süsteemi- ja võrguhalduse ülesanne. Senised lähenemised selle ülesande 
lahendamiseks on enamasti põhinenud mõnel populaarsel sagedaste 
elemendihulkade otsimise algoritmil ning peamiselt on kaevandatud sündmuste 
tüüpidest koosnevaid mustreid. Kahjuks on senini kasutatud meetoditel mõned 
olulised puudused. Esiteks, paljud neist põhinevad Apriori algoritmil, mis aga ei 
sobi pikemate mustrite kaevandamiseks. Teiseks, olemasolevad meetodid on 
keskendunud sageliesinevate mustrite otsimisele, kuid harvaesinevate mustrite 
avastamine on sama oluline, sest see aitab kaasa anomaalsete sündmuste 
leidmisele. Kuigi andmete klasterdamise algoritmid võimaldavad seda 
probleemi lahendada, on neid harva rakendatud logidest mustrite 
kaevandamiseks. Kolmandaks, senini kasutatud meetodid on loodud peamiselt 
sündmuste tüüpidest koosnevate mustrite avastamiseks. Samas on eriti 
reamustrite kaevandamine oluline ülesanne, mis võimaldab kasutajal paremini 
mõista logis leiduva info iseloomu. 

Lahendamaks ülal loetletud probleeme, tutvustab käesolev väitekiri uudseid 
vahendeid ning tehnikaid sündmuste logide analüüsiks. Väitekirja teaduslik 
panus on järgmine: 

� Simple Event Correlator’i (SEC) väljatöötamine, mis demonstreerib 
kergekaalulise, platvormist sõltumatu ja avatud lähtekoodiga sündmuste 
korrelaatori sobivust ning efektiivsust sündmuste logide monitooringuks 
ja sündmuste voogude töötlemiseks, 

� uudse klasterdamisalgoritmi väljatöötamine sündmuste logidest mustrite 
kaevandamiseks, 

� uudse sagedaste elemendihulkade otsimise algoritmi väljatöötamine 
sündmuste logidest mustrite kaevandamiseks. 
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1. Introduction 

Event logging and event logs play an important role in modern IT systems. 
Today, many applications, operating systems, network devices, and other 
system components are able to log their events to a local or remote log server. 
For this reason, event logs are an excellent source for determining the health 
status of the system, and a number of tools have been developed over the past 
10-15 years for monitoring event logs in real-time. However, majority of these 
tools can accomplish simple tasks only, e.g., raise an alarm immediately after a 
fault message has been appended to a log file. On the other hand, quite many 
essential event processing tasks involve event correlation – a conceptual 
interpretation procedure where new meaning is assigned to a set of events that 
happen within a predefined time interval [Jakobson and Weissman, 1995].  

Event correlation is one of the most prominent real-time event processing 
techniques today. It has received a lot of attention in the context of network 
fault management over the past decade, and is becoming increasingly important 
in other domains as well, including event log monitoring. A number of 
approaches have been proposed for event correlation, and a number of event 
correlation products are available on the market. Unfortunately, existing 
products are mostly expensive, platform-dependent, and heavyweight solutions 
that have complicated design, being therefore difficult to deploy and maintain, 
and requiring extensive user training. For these reasons, they are often 
unsuitable for employment in smaller IT systems and on network nodes with 
limited computing resources.  

So far, the rule-based approach has been frequently used for monitoring 
event logs – event processing tasks are specified by the human analyst as a set 
of rules, where each rule has the form IF condition THEN action. For example, 
the analyst could define a number of message patterns in the regular expression 
language, and configure the monitoring tool to send an SMS notification when a 
message that matches one of the patterns is appended to the event log. Despite 
its popularity, the rule-based approach has nevertheless some weaknesses – 
since the analyst specifies rules by hand using his/her past experience, it is 
impossible to develop rules for the cases that are not yet known to the analyst; 
also, finding an analyst with a solid amount of knowledge about the system is 
usually a difficult task. In order to overcome these weaknesses, various 
knowledge discovery techniques have been employed for event logs, with data 
mining methods being a common choice. It should be noted that while event log 
monitoring tools conduct on-line (real-time) analysis of event log data, data 
mining methods are designed for off-line analysis – an existing event log data 
set is processed for discovering new knowledge, with the data set remaining 
constant throughout the discovery process. 

Recently proposed mining approaches for event logs have often been based 
on some well-known algorithm for mining frequent itemsets, and they have 
focused on detecting frequent event type patterns. However, existing 
approaches have several shortcomings. Firstly, many of the proposed algorithms 
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are variants of the Apriori algorithm [Agrawal and Srikant, 1994] which is 
inefficient for mining longer patterns. Secondly, recent research has 
concentrated on detecting frequent patterns, but the discovery of infrequent 
patterns is equally important, since this might reveal anomalous events that 
represent unexpected behavior of the system. Unfortunately, data clustering 
methods that can tackle this problem have seldom been applied for mining 
patterns from event logs. Thirdly, existing algorithms mostly focus on finding 
event type patterns, ignoring patterns of other sorts. In particular, the mining of 
line patterns provides the user a valuable insight into event logs, but this issue 
has received very little attention so far. 

The main contributions of this thesis are the following: 
� the development of Simple Event Correlator (SEC) that demonstrates the 

efficiency of a lightweight, platform independent, and open-source event 
correlator for monitoring event logs and processing event streams, 

� the proposal of a novel data clustering algorithm for mining patterns from 
event logs, 

� the proposal of a novel frequent itemset mining algorithm for mining 
frequent patterns from event logs. 

The remainder of this thesis overview paper is organized as follows – section 
2 discusses event logging and event log monitoring issues; section 3 provides an 
overview of related work on event correlation, and describes SEC and its 
application experience; section 4 discusses common approaches for mining 
patterns from event logs, related work on data clustering and frequent itemset 
mining, and presents novel algorithms for mining patterns from event logs; 
section 5 concludes the paper.  

2. Event logging and event log monitoring 

Before discussing event logging and event log monitoring issues in detail, this 
section presents some introductory definitions. Event is a change in the system 
state, with some events corresponding to system faults (e.g., a disk failure) and 
some reflecting normal system activity (e.g., a successful user login). When a 
system component encounters an event, the component could emit an event 
message that describes the event. For example, when a disk of a server becomes 
full, the server could generate a timestamped “Disk full” message for appending 
to a local log file or for sending over the network as an SNMP trap. Event 
logging is a procedure of storing event messages to the event log, where event 
log is a regular file that is modified by appending event messages. (Although 
sometimes databases of event messages are also called event logs, this thesis 
has focused on flat-file event logs.) Log client is the system component that 
emits event messages for event logging. In this thesis, the term event has often 
been used for denoting event message when it is clear from the context.  

In modern IT systems, event logs play an important role: 
� since in most cases event messages are appended to event logs in real-

time as they are emitted by system components, event logs are an 
excellent source of information for monitoring the system, 
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� information that is stored to the event log can be useful for analysis at a 
later time, e.g., for audit procedures or for retrospective incident analysis. 

Event logging can take place in various ways. In the simplest case the log 
client keeps the event log on a local disk and modifies it when an event occurs. 
Unfortunately, event logs will be scattered across the system with this logging 
strategy, each log possibly requiring separate monitoring or other analysis. 
Furthermore, the strategy assumes the presence of a local disk which is not the 
case for many network nodes (e.g., switches and routers). 

In order to address these problems, a flexible logging protocol called syslog 
was implemented for the BSD UNIX in the middle of 1980s. Over the past two 
decades, the BSD syslog protocol has become a widely accepted standard 
[Lonvick 2001] that is supported on many operating systems and is 
implemented in a wide range of devices like routers, switches, laser printers, 
etc. The syslog event message normally contains a message string, program 
name, level, and facility. Program name identifies the name of the sending 
application or process (e.g., ftpd or sendmail), level describes the severity of the 
event (e.g., warning or emerg), while facility describes the event category (e.g., 
mail or auth). In order to log an event, the log client must create a valid syslog 
event message and send it to a local or remote syslog server. 
 
 

 
Figure 2.1 A sample centralized logging infrastructure 
 
 
The communication between the client and the server takes place over the UDP 
transport protocol (usually, local clients can also contact the server via a file 
system socket). Unlike TCP, UDP does not provide guaranteed packet delivery, 
but it is much faster and consumes less network bandwidth than TCP. This 
makes the syslog protocol suitable for use in larger IT systems with many 
network nodes (the well-known SNMP protocol is popular for the same reason). 
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Also, since many applications, operating systems, and network devices support 
the syslog protocol, it is a perfect choice for building a centralized logging 
infrastructure. A centralized logging infrastructure comprises central log 
server(s) with applications, servers, routers, switches, and other system 
components acting as log clients (see Figure 2.1). Since event logs are now 
stored on a few central servers (rather than being scattered across the system), 
the event log monitoring and other analysis becomes much easier. 

A central log server is usually a UNIX host which runs the syslogd daemon 
as syslog server for receiving events from remote and local clients. The very 
first implementation of syslogd was included in the 4.3BSD UNIX, and since 
then a number of syslogd variants have been created for other platforms. After 
receiving an event from a log client, the syslogd daemon classifies it using the 
event parameters (usually level and facility), and processes the event according 
to its class. Processing the event could mean appending it to a local event log, 
relaying it to another server, forwarding it to an external program, or simply 
discarding it. 

Despite being widely used, the syslog protocol and many of its current 
implementations have some drawbacks – the protocol runs on top of UDP only 
and the log client can't choose a reliable transport protocol for event logging, 
event messages are not encrypted before they are sent over the network, and the 
syslogd daemon classifies events only using their level and facility. In order to 
overcome these difficulties, a standard for reliable syslog transmission has been 
proposed [New and Rose, 2001], and some syslog implementations support 
event logging over TCP which provides guaranteed packet delivery and allows 
one to use tunneling software for message encryption [Campi 2005]. As for the 
event classification, the syslog-ng software suite contains a syslog server that is 
able to distinguish between events by matching the sender host name, program 
name, and message string with user-defined regular expressions. 

Apart from the syslog-style event logging described above, event logs can 
also be produced with the help of some other event management protocol that 
was not specifically designed for logging. When a certain protocol is used for 
sending event messages from system components to a central event 
management server, the central event management software could write 
received events to an external event log. For example, many network 
management platforms and applications that rely on SNMP protocol (e.g., HP 
OpenView NNM, Tivoli NetView, and snmptrapd daemon from the Net-SNMP 
software package) are capable of producing external event log files. 

Because of the importance of event logs as the source of system health 
information, many tools have been developed over the past 10-15 years for 
monitoring event logs in real-time. Swatch [Hansen and Atkins, 1993] was the 
first such tool and is still used by many sites. Swatch monitors log files by 
reading every event message line that is appended to the log file, and compares 
it with rules where the conditional part of each rule is a regular expression (rules 
are stored in a textual configuration file). If the regular expression of a certain 
rule matches the event message line, Swatch executes the action part of the rule. 
Actions include sending a mail, executing an external program, writing a 
notification to the system console, etc. Swatch has also an option for ignoring 
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repeated event messages for a given time interval. 
Another popular tool for event log monitoring is Logsurfer [Ley and 

Ellerman, 1996]. Like Swatch, Logsurfer uses rule-based approach for event 
processing, employs regular expressions for recognizing input events, and 
monitors log files by comparing appended message lines with its rules. Apart 
from executing actions immediately when certain event messages are observed, 
Logsurfer also supports contexts and dynamic rules. Context is a memory-based 
buffer for storing event messages, and Logsurfer can report the content of a 
context through an external program. Dynamic rule is a rule that has been 
created from another rule with a special action. 

In addition to commonly used Swatch and Logsurfer, a number of other tools 
exist for monitoring event logs in real-time, and the interested reader is referred 
to the Loganalysis website (http://www.loganalysis.org) for more information. 
Apart from standalone monitoring tools, some system and network management 
platforms like HP OpenView Operations (formerly called ITO) and Tivoli Risk 
Manager have also capabilities for monitoring event logs. Nevertheless, in order 
to use these capabilities, the whole platform must be deployed which is a 
complex and time-consuming task. 

3. Simple Event Correlator (SEC) 

3.1. Introduction 

According to the widely accepted definition by Jakobson and Weissman, event 
correlation is a conceptual interpretation procedure where new meaning is 
assigned to a set of events that happen within a predefined time interval 
[Jakobson and Weissman, 1995]. During this procedure, original events might 
be removed and new events might be created. For example, consecutive events 
“Device internal temperature too high” and “Device unreachable” could be 
replaced by an event “Device stopped working due to overheating”. A software 
application that implements event correlation is called event correlator.  

Jakobson and Weissman have considered the following common event 
correlation operations in their work: 

� Compression – reduce multiple occurrences of identical events into a 
single event, 

� Filtering – suppress an event if one of its parameters has a certain value, 
� Suppression – suppress an event if a certain operational context is 

present, 
� Counting – counting and thresholding the number of repeated arrivals of 

identical events, 
� Escalation – in the presence of a certain operational context, assign a 

higher value to a certain event parameter (e.g., severity), 
� Generalization – replace an event with an event from its superclass, 
� Specialization – replace an event with an event from its subclass, 
� Temporal relationship – correlate events depending on the order and time 
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of their arrival, 
� Clustering – employ a complex correlation pattern where pattern 

components are previously defined correlation operations, primary 
network events, or external tests. 

The use of event correlation allows one to reduce the number of event 
messages sent to the system technicians, to identify root causes of the problems, 
to derive new and more meaningful events from existing ones, etc. Without the 
employment of event correlation techniques, event messages can easily 
overwhelm the human, since in modern IT systems it is not rare that hundreds 
of event messages are emitted by system components every second.  

As an example of the importance of event correlation, consider a common 
scenario involving linkdown and linkup event messages emitted by many 
network devices. On one hand, network link faults are usually critical events 
that require human intervention, but on the other hand, very short occasional 
link outages (linkdown is immediately followed by linkup with no further 
failures for the link) are frequent in today’s networks and normally don’t 
deserve any attention. Therefore, it is highly impractical to forward linkdown 
event messages to network technicians without previously correlating them. As 
a solution for this problem, many sites use the following event correlation 
scheme – if the linkdown event is not followed by linkup in t seconds, forward 
the linkdown event message to network technicians; otherwise generate the 
linkbounce event, and if more than n such events have been observed within the 
last t’ seconds, generate the linkqualitylow event and forward it to network 
technicians. In this way, technicians can focus on relevant network link issues 
and are not overwhelmed by vast amounts of meaningless event messages. 

One of the contributions of this thesis is the development of a lightweight, 
platform independent, and open-source tool for event correlation called Simple 
Event Correlator (SEC). SEC receives its input from regular files, named pipes, 
and standard input, and can thus be employed as an event log monitoring 
solution and be easily integrated with other applications. The rest of this section 
is organized as follows – section 3.2 provides an overview of related work on 
event correlation and discusses the motivation for developing SEC, section 3.3 
gives an overview of SEC, and section 3.4 describes its application experience. 

3.2. Related work on event correlation and the motivation for developing 
SEC 

Over the past decade, event correlation has received a lot of attention in the 
context of network fault management. A number of approaches have been 
proposed for event correlation, including rule-based [Froehlich et al., 2002], 
codebook based [Yemini et al., 1996], Bayes network based [Meira 1997; 
Steinder and Sethi, 2002], neural network based [Wietgrefe et al., 1997; 
Wietgrefe 2002], and graph based [Gruschke 1998] methods. There are also a 
number of event correlator products available on the market, like HP ECS, 
SMARTS, NetCool, NerveCenter, LOGEC, and RuleCore. 

Rule-based approach is a common approach for event correlation and has 
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been employed in several products like HP ECS and RuleCore. Some rule-based 
correlators closely resemble rule-based artificial intelligence (AI) systems 
where rules represent the knowledge about the system (the Rete algorithm 
[Forgy 1982] can be employed in such systems for finding matching rules 
efficiently), while in the case of other rule-based correlators rules are used to 
define the event correlation algorithm. One of the main advantages of the rule-
based event correlation is the fact that humans find it usually natural to express 
their knowledge in terms of rules. For example, it is easy to describe temporal 
relations between events with rules, while it could be cumbersome with other 
methods. Furthermore, unlike some other event correlation methods (e.g., neural 
network based correlation), the rule-based event correlation is clear and 
transparent to the end user. As argued in [Rich and Knight, 1991], if end users 
do not understand why and how the application reached its output, they tend to 
ignore the results computed by that application.  

 
 

 
 

Figure 3.1 The synergy between rule-based event correlation and data mining 
 
 

It should be noted that the rule-based event correlation does not include the 
learning process – past experience is not used for deriving new knowledge, and 
all event correlation rules are specified by the human analyst. However, as 
discussed in section 1, it is impossible to develop rules for the cases that are not 
yet known to the analyst, and also, finding an analyst with a solid amount of 
knowledge about the system is usually a difficult task. In order to address these 
problems, various data mining methods have been proposed for knowledge 
discovery from event logs. The TASA system developed at the University of 
Helsinki [Klemettinen 1999] mines frequent event type patterns and derives 
rules from detected patterns that describe temporal relations between event 
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types. The analyst then selects interesting rules and converts them to event 
correlation rules. Burns et al. have developed the EventBrowser system [Burns 
et al., 2001] that uses data mining and visualization techniques for finding event 
patterns and for creating event correlation rules. The tools and algorithms 
described in section 4 can also assist the analyst in discovering event correlation 
knowledge. Figure 3.1 depicts the synergy between rule-based event correlation 
and data mining for event logs. 

Although event correlation has been long applied primarily for network fault 
management, there is a clear trend to extend its use to other application domains 
as well [Jakobson et al., 2000], most notably to security management and 
intrusion detection. Staniford et al. have implemented Spice event correlation 
engine for detecting stealthy portscans [Staniford et al., 2002], Julisch has 
proposed an alarm clustering method for root cause analysis [Julisch 2003], 
Morin and Debar have suggested the chronicles formalism for correlating 
intrusion symptoms [Morin and Debar, 2003], Snort IDS [Roesch 1999] is able 
to count and threshold events, etc. 

Although event correlation systems that are currently available on the market 
have been highly successful and are used worldwide by many larger companies, 
they suffer from a number of drawbacks. 

Firstly, existing systems are often heavyweight solutions that have 
complicated design and user interface. This means that their deployment and 
maintenance is time-consuming, and they require extensive user training. Also, 
their complexity and resource requirements make them often unsuitable for 
employment in smaller IT systems and for event correlation on nodes with 
limited computing resources, e.g., for distributed event correlation in ad hoc and 
sensor networks (nodes in such networks have limited hardware capabilities).  

Secondly, since existing systems are mostly commercial, they are platform-
dependent – customers are supplied with program binaries that run on a limited 
number of operating systems. Furthermore, several commercial systems have 
been designed for one particular network management platform only. Some 
systems also suffer from the fact that they have been designed specifically for 
network fault management, and their application in other domains (including 
event log monitoring) is cumbersome. 

Thirdly, existing systems tend to be quite expensive. Therefore, many 
academic institutions and smaller companies with more limited budget are 
unable to use them for daily network and system management tasks or for 
research experiments. Since a lot of research has been done in the field of event 
correlation recently, some experimental correlation engine prototypes have been 
created, but most such prototypes are not publicly available on the Internet. 
Currently, there is no open-source event correlation engine available that would 
be actively developed and mature enough for use in a production environment 
(although RuleCore was initially an open-source project, it has become a 
commercial product). One interesting event correlation related open-source 
project is CLIPS, which is an environment for creation of rule-based expert 
systems. Although CLIPS itself is not an event correlation tool, it has been 
successfully used for constructing event correlation systems [Jakobson and 
Weissman 1995; Jakobson et al., 2000]. 
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It should be noted that some event correlation operations are supported by 
popular event log monitoring tools, e.g., Swatch supports event compression 
and Logsurfer supports temporal relationship operations. Nevertheless, the 
event correlation capabilities of current log monitoring tools are quite limited. 

For the reasons above, quite many sites are using homegrown event 
correlation solutions which often comprise a few application-specific shell 
scripts. Each time a new application is set up, a new solution has to be 
developed, which is rather impractical and time-consuming. 

One of the main contributions of this thesis was the development of an open-
source platform independent tool for rule-based event correlation called Simple 
Event Correlator (SEC) which addresses the problems described in this section. 
The primary design goal of SEC was to fill the gap between homegrown and 
commercial solutions, and to create a lightweight and easily customizable tool 
that could be used for a wide variety of event correlation tasks, either standalone 
or integrated with other applications. 

3.3. Description of SEC 

SEC is an open-source event correlation tool that uses rule-based approach for 
processing events. This approach was chosen because of its naturalness of 
knowledge representation and transparency of the event correlation process. The 
main design objectives for SEC were platform independence, lightweight build 
and ease of configuration, applicability for a wide variety of event correlation 
tasks, and low consumption of system resources.  

In order to achieve independence from operating system platforms, the 
author decided to write SEC in Perl. Since Perl runs on almost every operating 
system flavour and has become a standard part of many OS distributons, Perl 
applications are able to run on a wide range of operating systems. In addition, 
well-written Perl programs are fast and memory-efficient.  

SEC does not need much disk space and is very easy to install, since its 
current size is only about 250KB, and its configuration is stored in regular text 
files (the size of each file is typically a few kilobytes). Also, since SEC is 
written entirely in Perl and does not depend on other software packages, it can 
be used instantly after its source distribution has been unpacked, without any 
additional preparations (such as compiling and linking the source or installing 
other software). 

SEC receives its input events from file streams (before the 2.2.0 version only 
one input stream was supported), and can produce output events by executing 
user-specified shell commands, by writing messages to files or named pipes, by 
calling precompiled Perl subroutines, etc. (note that output events can be sent 
over the network to another instance of SEC, allowing one to configure 
distributed event correlation schemes). Regular files, named pipes, and standard 
input are currently supported as input, allowing one to use SEC as an event log 
monitoring solution and to integrate it with any application that is able to write 
its output events to a file stream. Applications that have an event management 
API can also be integrated through simple plugins that employ API calls to read 
the application’s event stream, and copy it to the standard output or file (a 
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sample plugin for HP OpenView Operations is a part of the SEC package). 
SEC configuration is stored in text files which can be created and modified 

with any text editor. Each configuration file contains one or more rules, and 
rulesets from different files are applied virtually in parallel. The 1.X versions of 
SEC used a configuration file syntax where a rule definition was a list of values 
separated by the bar symbol (|). Starting from the 2.0 version, a keyword-value-
like syntax is employed which is more readable and flexible.  

An important part of the SEC rule is the event matching pattern. SEC 
supports regular expressions, substrings, Perl subroutines, and truth values as 
patterns. Support for regular expressions eases the configuration of SEC, since 
many UNIX tools (like grep, sed, find, etc.) rely on regular expressions, and 
therefore most system and network administrators are already familiar with the 
regular expression language. Also, since majority of event log monitoring tools 
use regular expression language for matching events, SEC can be deployed as a 
log monitoring solution without any extra integration work. Starting from the 
2.3.0 version, events can be passed to precompiled Perl subroutines for 
recognition which allows the user to configure custom event matching schemes.  

In addition to event matching pattern, most rule definitions specify a list of 
actions, and optionally a Boolean expression of contexts (starting from the 2.1.7 
version, Perl expressions can also be used as operands). The SEC contexts are 
logical entities created during the event correlation process, with each context 
having a certain lifetime (either finite or infinite). Contexts can be used for 
activating and deactivating rules dynamically at runtime, e.g., if a rule definition 
has (X OR Y) specified for its context expression and neither the context X nor 
the context Y exist at a given moment, the rule will not be applied. Another 
important function of the SEC contexts is to act as event stores – events of 
interest can be associated with a context, and all the collected events supplied 
for an external processing at a later time (this idea was borrowed from 
Logsurfer). 

Currently, SEC supports nine rule types that implement a number of 
common event correlation operations. SEC actions were not only designed for 
generating output events, but also for making rules to interact, for managing 
contexts and storing events, for connecting external event analysis modules to 
SEC, for executing Perl miniprograms and subroutines without forking a 
separate process, etc. By combining several rules with appropriate action lists 
and context expressions, more complex event correlation schemes can be 
defined (see the research papers of this thesis [Vaarandi 2002a; Vaarandi 
2002c] and the SEC online documentation for detailed examples). In order to 
learn more about SEC performance, please see the case studies in the research 
papers of this thesis [Vaarandi 2002a; Vaarandi 2002c]. 

This subsection contained only a brief overview of SEC and its capabilities. 
For a thorough description, the interested reader is referred to the SEC online 
documentation. There are also several other sources of information available 
about SEC. “Working with SEC – the Simple Event Correlator” [Brown 2003] 
is an online tutorial that not only provides a good introduction to SEC but also 
covers a number of advanced issues like integrating SEC with MySQL. Chapter 
5 of “Hardening Linux” [Turnbull 2005] discusses how to employ SEC for 
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monitoring syslog log files. Also, recently a paper with a useful ruleset library 
has been published that describes the application of SEC at the University of 
Massachusetts at Boston [Rouillard 2004]. 

3.4. SEC application experience 

The 1.0 version of SEC was released in March 2001. The first versions of SEC 
were mainly used for accomplishing network management tasks, e.g., for 
augmenting network management agents with event correlation capabilities 
[Vaarandi 2002a] and for central event correlation at the HP OpenView NNM 
management server [Vaarandi 2002b]. At the time of writing this thesis 
overview paper (April 2005), SEC is applied for a wide variety of event 
correlation tasks in the domains of network fault and performance management, 
intrusion detection, log file analysis, event warehousing, etc. A number of 
research papers have been published that describe the use of SEC in various 
domains [Casey 2001; Dillis 2003; Gorton 2003; Meehan 2005; Rouillard 2004; 
Sawall 2004]. 

Applications and database platforms that SEC has been integrated with 
include HP OpenView Network Node Manager, HP OpenView Operations 
(both management server and agents), CiscoWorks, BMC Patrol, Nagios, 
SNMPTT, Snort IDS, Oracle, and MySQL. SEC has been used on a variety of 
OS platforms, like Linux, Solaris, HP-UX, AIX, FreeBSD, Tru64 UNIX, Mac 
OS X, and Windows2000. 

SEC has been successfully adopted by institutions with various sizes, from 
companies with relatively small IT systems to large corporations with global 
networks. The author has received a detailed feedback from more than 20 
institutions that use SEC (see Appendix A). The data in Appendix A reveal that 
the major advantages of SEC over other solutions are its open-source nature and 
free download status, ease of configuration, flexibility, applicability for a wide 
range of event correlation tasks, and ability to run on multiple platforms. 

4. Pattern mining techniques for event logs 

4.1. Introduction 

Since event logs play a significant role in modern IT systems, the mining of 
patterns from event logs has been identified as an important system and network 
management task [Klemettinen 1999; Ma and Hellerstein 2000; Mannila et al., 
1997; Pei et al., 2000; Srivastava et al., 2000; Zheng et al., 2002]. Recently 
proposed mining algorithms have often been variants of the Apriori algorithm 
for mining frequent itemsets [Klemettinen 1999; Ma and Hellerstein 2000; 
Mannila et al., 1997; Zheng et al., 2002], and they have been mainly designed 
for detecting frequent event type patterns [Klemettinen 1999; Ma and 
Hellerstein 2000; Mannila et al., 1997; Pei et al. 2000; Zheng et al., 2002]. The 
algorithms assume that each event from the event log has two attributes – time 



 20 

of event occurrence and event type – and the event log is considered as a 
sequence E1,…,En, where Ei = (ti, ei) is an event, ei is the type of Ei, ti is the 
occurrence time of Ei, and ti � tj when i < j.  

Detected frequent patterns reveal what event types are more closely related, 
e.g., the OutOfMemory event is always immediately followed by the Reboot 
event, or events GET article193.html and GET article426.html often occur 
together. The knowledge discovered during the mining can be used for various 
purposes, like building rules for event correlation systems (see section 3.2 for a 
detailed discussion), improving designs of web sites [Pei et al., 2000; Srivastava 
et al., 2000], etc. In some cases, it might be useful to derive association rules 
from detected patterns, since this representation of knowledge could be more 
convenient to the end user. Each association rule has the following form – if a 
certain combination of event types occurs within a certain time window, then 
another combination occurs within another time window with a certain 
probability. As an example, consider the following rule – if events A and B 
occur within 20 seconds then event C also occurs within 60 seconds with the 
probability of 95%. However, since the generation of association rules from 
frequent patterns is a well-studied problem, this issue has not been investigated 
in this thesis. 

There are several ways for defining the frequent event type pattern, with two 
definitions being most common. In the case of the first definition (e.g., see 
[Klemettinen 1999]), the algorithm views the event log as a set of overlapping 
windows, where each window starts from a time moment T and contains events 
from a time frame of W seconds: {Ei | T � ti < T + W}, W > 0, T � tn,T + W > t1 
(the window size W is given by the user). A certain combination of event types 
is considered a frequent pattern if this combination is present at least in s 
windows, where the threshold s is specified by the user. 

 
Figure 4.1 A sample event log 
 
 
In the case of the second definition (e.g., see [Pei et al., 2000]), the algorithm 
assumes that the event log has been divided into non-overlapping slices 
according to some criteria (e.g., events from the same slice were all issued by 
the same host). A certain combination of event types is considered a frequent 
pattern if this combination is present at least in s slices (the threshold s is given 
by the user). Although the use of this definition requires more elaborate 

Original event log: 
(1, login), (2, automatic backup done), (3, logout), (13, automatic backup done), 
(22, login), (23, automatic backup done), (24, logout) 
 
Event log after it has been divided into slices: 
(1, login), (3, logout) – issued by host A 
(2, automatic backup done) – issued by host B 
(13, automatic backup done) – issued by host C 
(22,login), (24, logout) – issued by host D 
(23, automatic backup done) – issued by host E 
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preprocessing of the event log, it also eliminates the noise that could appear 
when events from different slices are mixed. 

As an example, consider the event log in Figure 4.1. If the threshold s is 2 
and the window size W is 3, then event types login, automatic backup done, and 
logout would form a frequent pattern according to the first definition (this 
combination of event types is present in windows starting from time moments 1 
and 22). On the other hand, it is obvious to the human observer that the 
presence of the automatic backup done event near login and logout is purely 
coincidental, since automatic backups don’t depend on user sessions at other 
nodes. Fortunately, the second definition would not associate the automatic 
backup done event with login and logout. As another example, if the goal is to 
detect patterns in intrusion attempts from the same IP address, the first 
definition is likely to yield many irrelevant patterns, while the second definition 
produces relevant patterns only (if slices are formed by the source IP address of 
intrusion attempts). In other words, in many cases the appropriate division of 
the event log into slices helps the mining algorithm to focus more closely on its 
task, and thus to save computing resources and to increase its output quality. 
Also, event logs often contain data that help to arrange more closely related 
events into slices (e.g., the program name field of syslog messages). For these 
reasons, the second approach for defining the frequent event type pattern has 
been employed in this thesis. 

The order of events in windows or slices (occurrence time ascending order) 
is often taken into account during the mining, since this could reveal causal 
relations between event types – e.g., instead of an unordered set {DeviceDown, 
FanFailure} the algorithm outputs a sequence FanFailure � DeviceDown. 
However, as pointed out in [Klemettinen 1999], the mining of unordered 
frequent event type sets is equally important. Due to network latencies, events 
from remote nodes might arrive and be written to the log in the order that differs 
from their actual occurrence order. Even if events are timestamped by the 
sender, system clocks of network nodes are not always synchronized, making it 
impossible to restore the original order of events. Also, in many cases events A 
and B might occur in many windows or slices together, but their occurrence 
order could vary (e.g., since they are not causally related). Therefore, the order 
of events in a slice has not been considered important in this thesis. 

Existing mining algorithms for event logs have several shortcomings. Firstly, 
many of the algorithms are variants of Apriori which is inefficient for mining 
longer patterns (see section 4.3 for a detailed discussion). Secondly, recent 
research has focused on detecting frequent patterns, but as pointed out in [Burns 
et al., 2001], the discovery of infrequent patterns is equally important, since this 
might reveal anomalous events that represent unexpected behavior of the 
system. For example, fault events are usually very infrequent in a well-
maintained system, but are nevertheless highly interesting. Unfortunately, 
frequent itemset mining algorithms like Apriori don’t address this problem, 
while data clustering methods that are able to tackle the problem have seldom 
been applied for mining patterns from event logs. 

Thirdly, existing algorithms mostly focus on finding event type patterns, 
ignoring patterns of other sorts. However, since many event logs are textual and 



 22 

contain single line messages (e.g., this is the case for syslog log files), the 
mining of line patterns provides the user a valuable insight into event logs. 
Because event log messages rarely contain explicit event type codes (e.g., 
syslog messages do not have the event type parameter), it is difficult to mine 
frequent event type patterns from a raw event log. Fortunately, it is possible to 
derive event types from event log lines, since very often the events of the same 
type correspond to a certain line pattern. For example, the lines 

Router myrouter1 interface 192.168.13.1 down 
Router myrouter2 interface 10.10.10.12 down 
Router myrouter5 interface 192.168.22.5 down 
represent the event type “router interface down”, and correspond to the line 

pattern Router * interface * down. 
Note that the mining of line patterns is not merely a preprocessing step, but 

can be very useful for other purposes as well. For example, frequent line 
patterns could help the human analyst to construct the event log model that 
describes the normal system activity (because event messages that reflect the 
normal system activity are usually frequent). The model can be employed for 
event log monitoring – if an event message is appended to the log that does not 
fit the model, it can be regarded anomalous and an alarm can be raised. On the 
other hand, the detection of infrequent line patterns could help the analyst to 
find previously unknown fault messages. 

In order to address the problems discussed above, this thesis analyses the 
suitability of existing prominent frequent itemset mining algorithms for event 
log data, and proposes a novel algorithm for mining frequent event type and line 
patterns from event logs.  

Another contribution of this thesis is the study of data clustering algorithms 
and the proposal of a new clustering algorithm for mining line patterns from 
event logs. Clustering algorithms aim at dividing the set of objects into groups 
(or clusters), where objects in each cluster are similar to each other (and as 
dissimilar as possible to objects from other clusters). Objects that do not fit well 
to any of the clusters detected by the algorithm are considered to form a special 
cluster of outliers. When event log lines are viewed as objects, clustering 
algorithms are a natural choice, because line patterns form natural clusters – 
lines that match a certain pattern are all similar to each other, and generally 
dissimilar to lines that match other patterns. Also, the cluster of outliers would 
contain infrequent lines that could represent previously unknown fault 
conditions, or other unexpected behavior of the system that deserves closer 
investigation. 

The rest of this section is organized as follows – sections 4.2 and 4.3 discuss 
related work on data clustering and frequent itemset mining, section 4.4 
describes the properties of event log data and the motivation for the 
development of new algorithms for mining patterns from event logs, and 
sections 4.5 and 4.6 present an overview of novel data clustering and frequent 
itemset mining algorithms for event logs. 
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4.2. Related work on data clustering 

Clustering methods have been researched extensively over the past decades, and 
many algorithms have been developed [Berkhin 2002; Hand et al., 2001; Jain et 
al., 1999]. The clustering problem is often defined as follows: given a set of 
points with n attributes in the data space �n, find a partition of points into 
clusters so that points within each cluster are close (similar) to each other. In 
order to determine, how close (similar) two points x and y are to each other, a 
distance function d(x, y) is employed. Many algorithms use a certain variant of 
Lp norm (p = 1, 2, ...) for the distance function: 

 
As a clustering example, consider the k-medoids method which divides the set 
of points into k clusters, where the value of k is given by the user. Each cluster 
is represented by a certain point (medoid) from the cluster, and each point 
belongs to the cluster represented by the closest medoid. The method starts with 
an arbitrary selection of k medoids, and continues its work by replacing a 
medoid with a non-medoid at each step, until the best clustering is achieved 
(after each step, the quality of clustering is measured with a special function). 
Variants of this method are used by a number of algorithms like PAM, CLARA, 
and CLARANS [Ng and Han, 1994]. Another popular methods include the k-
means method (like k-medoids, it divides the set of points into k clusters, but 
instead of medoids employs means for representing clusters), the divisive 
method (it starts with a single cluster containing all points and splits clusters 
recursively), the agglomerative method (it starts with single point clusters and 
joins clusters recursively), etc. [Berkhin 2002; Jain et al., 1999]. It should be 
noted that while some methods expect the user to specify the number of 
clusters, other methods don’t have that restriction. 

Today, there are two major challenges for traditional clustering methods that 
were originally designed for clustering numerical data in low-dimensional 
spaces (where usually n is well below 10). 

Firstly, quite many data sets consist of points with categorical attributes, 
where the domain of an attribute is a finite and unordered set of values [Ganti et 
al. 1999, Guha et al., 2000]. As an example, consider a categorical data set with 
attributes car-manufacturer, model, type, and color, and data points ('Honda', 
'Civic', 'hatchback', 'green') and ('Ford', 'Focus', 'sedan', 'red'). Also, it is quite 
common for categorical data that different points can have different number of 
attributes. Therefore, it is not obvious how to measure the distance between data 
points. Though several distance functions for categorical data have been 
proposed, e.g., the Jaccard coefficient 
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Note that event log lines can be viewed as points from a categorical data set, 
since each line can be divided into words, with the n-th word serving as a value 
for the n-th attribute. For example, the log file line Connection from 192.168.1.1 
could be represented by the data point ('Connection', 'from', '192.168.1.1'). This 
representation of event log data has also been used in this thesis. 

Secondly, quite many data sets today are high-dimensional, where data 
points can easily have tens of attributes. Unfortunately, traditional clustering 
methods have been found not to work well when they are applied to high-
dimensional data. As the number of dimensions n increases, it is often the case 
that for every pair of points there exist dimensions where these points are far 
apart from each other, which makes the detection of any clusters almost 
impossible (according to some sources, this problem starts to be severe when 
n � 15) [Aggarwal et al., 1999; Agrawal et al., 1998; Berkhin 2002; Hinneburg 
and Keim, 1999]. Furthermore, traditional clustering methods are often unable 
to detect natural clusters that exist in subspaces of the original high-dimensional 
space [Aggarwal et al., 1999; Agrawal et al., 1998]. For instance, data points 
(1333, 1, 1, 99, 25, 2033, 1044), (12, 1, 1, 724, 667, 36, 2307), and (501, 1, 1, 
1822, 1749, 808, 9838) are not seen as a cluster by many traditional methods, 
since in the original data space they are not very close to each other. On the 
other hand, they form a very dense cluster in the second and third dimension of 
the space. 

The dimensionality problems described above are also relevant to the 
clustering of event log data, since event log data is typically high-dimensional 
(i.e., there are usually more than just 3-4 words on every line), and most of the 
line patterns correspond to clusters in subspaces. For example, the lines 

log: connection from 192.168.1.1 
log: RSA key generation complete 
log: Password authentication for john accepted. 
form a natural cluster in the first dimension of the data space, and 

correspond to the line pattern log: *. 
During past few years, several algorithms have been developed for clustering 

high-dimensional data, like CLIQUE, MAFIA, CACTUS, and PROCLUS. The 
CLIQUE [Agrawal et al., 1998] and MAFIA [Goil et al., 1999] algorithms 
closely remind the Apriori algorithm for mining frequent itemsets [Agrawal and 
Srikant, 1994]: they start with identifying all clusters in 1-dimensional 
subspaces, and after they have identified clusters C1,...,Cm in k-1-dimensional 
subspaces, they form cluster candidates for k-dimensional subspaces from 
C1,...,Cm, and then check which of those candidates are actual clusters. Those 
algorithms are effective in discovering clusters in subspaces, because they do 
not attempt to measure distance between individual points, which is often 
meaningless in a high-dimensional data space. Instead, their approach is density 
based, where a clustering algorithm tries to identify dense regions in the data 
space, and forms clusters from those regions. Unfortunately, the CLIQUE and 
MAFIA algorithms suffer from the fact that Apriori-like candidate generation 
and testing for higher-dimensional subspaces involves high runtime overhead 
(see section 4.3 for a detailed discussion). The CACTUS algorithm [Ganti et al., 
1999] first makes a pass over the data and builds a data summary, then 
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generates cluster candidates during the second pass using the data summary, and 
finally determines the set of actual clusters. Although CACTUS makes only two 
passes over the data and is therefore fast, it is susceptible to the phenomenon of 
chaining (long strings of points are assigned to the same cluster) [Hand et al., 
2001], which is undesirable if one wants to discover line patterns from event 
logs. The PROCLUS algorithm [Aggarwal et al., 1999] uses the k-medoids 
method for detecting k clusters in subspaces of the original space. However, in 
the case of event log data the number of clusters can rarely be predicted 
accurately, and therefore it is not obvious what is the right value for k. 

4.3. Related work on frequent itemset mining 

Recently proposed mining approaches for event logs have often been based on 
some well-known algorithm for mining frequent itemsets (like Apriori or FP-
growth) [Klemettinen 1999; Ma and Hellerstein 2000; Mannila et al., 1997; Pei 
et al. 2000; Zheng et al., 2002]. In this subsection we will discuss the frequent 
itemset mining problem and prominent algorithms for addressing this problem. 

Let I = {i1,...,in} be a set of items. If X � I, X is called an itemset, and if 
|X| = k, X is also called a k-itemset. A transaction is a tuple T = (tid, X) where 
tid is a transaction identifier and X is an itemset. A transaction database D is a 
set of transactions, and the cover of an itemset X is the set of identifiers of 
transactions that contain X: cover(X) = {tid | (tid, Y) � D, X � Y}. The support 
of an itemset X is defined as the number of elements in its cover: supp(X) = 
|cover(X)|. The task of mining frequent itemsets is formulated as follows – 
given the transaction database D and the support threshold s, find itemsets 
{X | supp(X) � s} and their supports (each such set is called a frequent itemset). 

The frequent itemset mining problem has received a lot of attention during 
the past decade, and a number of mining algorithms have been developed. For 
the sake of efficient implementation, most algorithms order the items according 
to certain criteria, and use this ordering for representing itemsets. In the rest of 
this section, we assume that if X = {x1,...,xk} is an itemset, then x1 < ... < xk. 

The first algorithm developed for mining frequent itemsets was Apriori 
[Agrawal and Srikant, 1994] which works in a breadth-first manner – 
discovered frequent k-itemsets are used to form candidate k+1-itemsets, and 
frequent k+1-itemsets are found from the set of candidates. 

Recently, an efficient trie (prefix tree) data structure has been proposed for 
the candidate support counting [Bodon 2003; Borgelt 2003]. Each edge in the 
itemset trie is labeled with the name of a certain item, and when the Apriori 
algorithm terminates, non-root nodes of the trie represent all frequent itemsets. 
If the path from the root node to a non-root node N is x1,...,xk, N identifies the 
frequent itemset X = {x1,...,xk} and contains a counter that equals to supp(X). In 
the remainder of this section, we will use notations node(x1,...,xk) and node(X) 
for N, and also, we will always use the term path to denote a path that starts 
from the root node. Figure 4.2 depicts a sample transaction database and an 
itemset trie (the support threshold is 2 and items are ordered in lexicographic 
order a < b < c < d < e). 
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Transaction ID Itemset 
1 abcde 
2 abc 
3 bcd 
4 abc 
5 ab 

 
Figure 4.2 A sample Apriori itemset trie 
 
 
As its first step, the Apriori algorithm detects frequent 1-itemsets and creates 
nodes for them. The nodes for candidate k+1-itemsets are generated as follows – 
for each node node(x1,...,xk) at depth k all its siblings (nodes with the same 
parent) will be inspected. If xk < yk for the sibling node(x1,...,xk-1,yk), then the 
candidate node node(x1,...,xk,yk) will be inserted into the trie with its counter set 
to zero. Since every subset of a frequent itemset must also be frequent, this 
candidate generation procedure guarantees that all frequent k+1-itemsets are 
present in the set of candidates. In order to find frequent k+1-itemsets, the 
algorithm traverses the itemset trie for each transaction (tid, Y) � D, and 
increments the counter in node(X) if X � Y, |X| = k + 1. After the database pass, 
the algorithm removes nodes for infrequent candidate itemsets. 

Although the Apriori algorithm works well when frequent itemsets contain 
relatively few items (e.g., 4-5), its performance starts to deteriorate when the 
size of frequent itemsets increases [Bayardo 1998; Han et al., 2000; Zaki 2000]. 
In order to produce a frequent itemset {x1,...,xk}, the algorithm must first 
produce its 2k-2 subsets that are also frequent, and when the database contains 
frequent k-itemsets for larger values of k (e.g., 30-40), the number of nodes in 
the itemset trie could be very large. As a result, the runtime cost of the repeated 
traversal of the trie will be prohibitive, and the trie will consume large amounts 
of memory. 

In recent past, several algorithms have been proposed that explore the search 
space in a depth-first manner, and that are reportedly by an order of a magnitude 
faster than Apriori. The most prominent depth-first algorithms for mining 
frequent itemsets are Eclat [Zaki 2000] and FP-growth [Han et al., 2000]. An 
important assumption made by Eclat and FP-growth is that the transaction 
database fits into main memory. At each step of the depth-first search, the 
algorithms are looking for frequent k-itemsets {p1,...,pk-1,x}, where the prefix 
P = {p1,...,pk-1} is a previously detected frequent k-1-itemset. When looking for 
these itemsets, the algorithms extract from the database the data describing 
transactions that contain the itemset P, and search only this part of the database. 
If frequent k-itemsets were found, one such itemset is chosen for the prefix of 
the next step, otherwise the new prefix is found by backtracking. Since the 
database is kept in main memory using data structures that facilitate the fast 
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extraction of data, Eclat and FP-growth can explore the search space faster than 
Apriori. 

The main difference between the Eclat and FP-growth algorithm is how the 
transaction database is stored in memory. Eclat keeps item covers in memory 
(this representation is also called the vertical database layout) which allows the 
algorithm to calculate itemset supports with fast intersection operations, e.g., 
|cover(P) � cover({x})| equals to the support of P 	 {x}. FP-growth saves all 
transactions into FP-tree which is a tree-like data structure [Han et al., 2000]. 
Each non-root node of the FP-tree contains a counter and is labeled with the 
name of a certain frequent item (frequent 1-itemset). In order to build the FP-
tree, the FP-growth algorithm first detects frequent items and orders them in 
support ascending order. Frequent items of each transaction are then saved into 
FP-tree in reverse order as a path, by incrementing counters in existing nodes of 
the path and creating missing nodes with counters set to 1 (infrequent items are 
ignored, since they can’t belong to any frequent itemset). In that way, nodes 
closer to the root node correspond to more frequent items, and are more likely 
to be shared by many transactions, yielding a smaller FP-tree. In addition, nodes 
corresponding to the same item are linked into a chain with node-links, and the 
item header table holds a pointer to the first node of each such chain. This 
allows the FP-growth algorithm to quickly locate all nodes for a certain item. 
Figure 4.3 depicts a sample FP-tree data structure (the support threshold is 2 and 
frequent items are ordered in support ascending order d < a < c < b). 
 
 
 
 
 
 
 
 

Transaction ID Itemset 
1 abcde 
2 abc 
3 bcd 
4 abc 
5 ab 

 
Figure 4.3 A sample FP-tree data structure 
 
 
 
Note that the nature of transaction data determines whether Eclat or FP-growth 
is more efficient in terms of memory consumption. In some cases (e.g., see 
[Goethals 2004]) Eclat could consume less memory, while the results presented 
in this thesis suggest that the memory requirements of FP-growth are more 
modest for event log data. Unfortunately, both Eclat and FP-growth can't be 
employed for larger transaction databases which don't fit into main memory. 
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Although some techniques have been proposed for addressing this problem 
(e.g., the partitioning of the database), these techniques are often infeasible 
[Goethals 2004]. In the next section we will show that this problem is also 
relevant for event log data sets. 

4.4. The nature of event log data and the motivation for developing new 
pattern mining algorithms 

In order to cluster event log lines, event logs are viewed as categorical data sets 
in this thesis, and each event log line is considered to be a data point with words 
of the line serving as attribute values. In order to apply frequent itemset mining 
algorithms for event logs, event logs are viewed as transaction databases in this 
thesis, and the task of mining frequent event type patterns or frequent line 
patterns is formulated as the task of mining frequent itemsets. In the case of 
event type patterns, event types act as items, and in the case of line patterns, 
items are words from event log lines (the word positions are taken into account 
during the mining).  

The nature of input data plays an important role when designing an efficient 
knowledge discovery algorithm. The experiments described in the research 
papers of this thesis [Vaarandi 2003; Vaarandi 2004] have revealed the 
following important properties of event log data: 

� the number of items (or attribute values) in the data set can be quite large, 
especially when line patterns are mined from raw event logs; however, 
only few items (attribute values) are relatively frequent, and also, most 
items (attribute values) appear only few times in the data set, 

� frequent itemsets may contain many items, which means that Apriori is 
not always adequate for processing event log data, 

� there are often strong correlations between frequent items (attribute 
values), i.e., items (attribute values) occur together in the same event log 
slice or line many times in the data set. 

In order to assess how well the Apriori, Eclat, and FP-growth algorithms are 
suited for mining frequent patterns from event logs, a number of experiments 
were conducted [Vaarandi 2004]. The experiment results indicate that all tested 
algorithms are not entirely suitable for discovering patterns from event logs – 
depth-first algorithms could face difficulties when they attempt to load the 
transaction database into main memory, Apriori has a poor performance, and for 
data sets containing larger frequent itemsets all algorithms are too slow. As 
discussed in section 4.2, existing data clustering algorithms are also 
inconvenient for processing event log data.  

The following subsections will present an overview of efficient mining 
algorithms that address the shortcomings of existing algorithms. 

4.5. A clustering algorithm for mining line patterns 

This thesis proposes an algorithm for clustering event log lines which makes 
only a few passes over the data and is thus fast, and which detects clusters that 
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are present in subspaces of the original data space. The algorithm relies on the 
special properties of event log data discussed in section 4.4, and uses the density 
based approach for clustering. 

The data space is assumed to contain data points with categorical attributes, 
where each point represents a line from an event log data set, and the attributes 
of each point are the words from the corresponding line. The data space has n 
dimensions, where n is the maximum number of words per line in the data set. 
A region S is a subset of the data space, where certain attributes i1,...,ik 
(1 � k � n) of all points that belong to S have identical values v1,…,vk: x � S, 
xi1 = v1, ..., xik = vk. We call the set {(i1,v1),...,(ik,vk)} the set of fixed attributes of 
region S. If k = 1 (i.e., there is just one fixed attribute), the region is called 1-
region. A dense region is a region that contains at least N points, where N is the 
support threshold value given by the user. 

The algorithm consists of three steps like the CACTUS algorithm [Ganti et 
al., 1999] – it first makes a pass over the data and builds a data summary, and 
then makes another pass to build cluster candidates, using the summary 
information collected before. As a final step, clusters are selected from the set 
of candidates. 

During the first step of the algorithm (data summarization), the algorithm 
identifies all dense 1-regions. Since this step could require large amounts of 
memory (due to the large number of attribute values), the summary vector 
technique is employed for reducing its memory cost [Vaarandi 2003]. 

After dense 1-regions have been identified, the algorithm builds all cluster 
candidates during one pass. The data set is processed line by line, and when a 
line is found to belong to m dense 1-regions that have fixed attributes 
(i1,v1),...,(im,vm), then a region with the set of fixed attributes {(i1,v1),...,(im,vm)} 
becomes a cluster candidate. If the cluster candidate is not present in the 
candidate table, it will be inserted into the table with the support value 1, 
otherwise its support value will be incremented. In both cases, the line is 
assigned to the cluster candidate.  

During the final step of the algorithm, the candidate table is inspected, and 
all regions with support values equal or greater than the support threshold value 
(i.e., regions that are guaranteed to be dense) are reported by the algorithm as 
clusters. Because of the definition of a region, each cluster corresponds to a 
certain line pattern, e.g., the cluster with the set of fixed attributes 
{(1, 'Password'), (2, 'authentication'), (3, 'for'), (5, 'accepted')} corresponds to 
the line pattern Password  authentication for * accepted. Thus, the algorithm 
can report clusters in a concise way by just printing out line patterns, without 
reporting individual lines that belong to each cluster (the CLIQUE algorithm 
reports clusters in a similar manner [Agrawal et al., 1998]). 

The algorithm described above has been implemented in a tool called Simple 
Logfile Clustering Tool (SLCT). Apart from identifying clusters, the tool can 
also report outlier lines, refine wildcard parts of cluster descriptions, filter and 
convert input lines with the help of regular expressions, etc. Further information 
about SLCT and the underlying algorithm can be found in SLCT online 
documentation and in one of the research papers of this thesis [Vaarandi 2003]. 
The paper also discusses the performance of SLCT and provides examples of 
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detected patterns and anomalous event log lines. 
Another recent paper [Stearley 2004] describes the use of SLCT for 

analyzing syslog log files – SLCT has been incorporated into the Sisyphus log 
analysis toolkit (developed at Sandia National Laboratories) and is employed 
for automated message typing. The paper also compares the performance and 
output of SLCT and Teiresias for several event log data sets (Teiresias is a well-
known pattern discovery algorithm originally developed for bioinformatics 
[Rigoutsos and Floratos, 1998]), and concludes that SLCT is an efficient tool 
for detecting message types. 

4.6. A frequent itemset mining algorithm for mining event type and line 
patterns 

This thesis also proposes an efficient frequent itemset mining algorithm for 
event logs that combines some of the features of previously discussed 
algorithms and takes into account the properties of event log data. Since depth-
first Eclat and FP-growth are inherently dependent on the amount of main 
memory, the proposed algorithm works in a breadth-first manner and employs 
the itemset trie data structure (see section 4.3). In order to avoid the weaknesses 
of Apriori, the algorithm uses several techniques for speeding up its work and 
reducing its memory consumption. 

The mining of frequent items is the first step of any breadth-first algorithm 
which creates a base for further mining. Unfortunately, because the number of 
items can be very large, the memory cost of this step is often quite high. In 
order to overcome this problem, the algorithm employs the summary vector 
technique [Vaarandi 2004]. 

Eclat and FP-growth are fast not only because of their depth-first search 
strategy, but also because they load the transaction database from disk (or other 
secondary storage device) into main memory. In order to speed up its work in a 
similar way, the algorithm loads most frequently used transaction data into the 
memory-based cache. Note that unlike Eclat and FP-growth, the algorithm does 
not depend on the amount of main memory, since the amount of data stored to 
the cache is controlled by the user [Vaarandi 2004]. 

As discussed in section 4.3, the Apriori algorithm is not well suited for 
processing data sets which contain frequent k-itemsets for larger values of k, 
since the itemset trie could become very large, making the runtime and memory 
cost of the algorithm prohibitive. However, when there are many strong 
correlations between frequent items in transactions, many parts of the Apriori 
itemset trie are likely to contain information that is already present in other 
parts. The algorithm proposed in this thesis employs a special technique for 
reducing the size of the itemset trie, so that the trie would still represent all 
frequent itemsets. 

Let F = {f1,...,fn} be the set of all frequent items. We call the set dep(fi) = 
{fj | fi � fj, cover({fi}) � cover({fj})} the dependency set of fi, and say that an item 
fi has m dependencies if |dep(fi)| = m. A dependency prefix of the item fi is the 



 31 

set pr(fi) = {fj | fj � dep(fi), fj < fi}. A dependency prefix of the itemset {fi1,...,fik} 
is the set pr({fi1,...,fik}) = 	j

k
=1 pr(fij).  

The technique for reducing the size of the itemset trie can be summarized as 
follows – if the itemset does not contain its dependency prefix, don't create a 
node in the trie for that itemset (please see [Vaarandi 2004] for a detailed 
discussion how the itemset trie is built). Although the resulting trie is often 
much smaller than the Apriori itemset trie, all frequent itemsets can be easily 
derived from its nodes (see Appendix B for formal proofs). 

The algorithm can be further optimized – if the trie reduction technique was 
not applied at node N for reducing the number of its child nodes, and node M is 
a child of N, then the siblings of M contain all necessary nodes for the creation 
of candidate child nodes for M in Apriori fashion. It is easy to see that with this 
optimization the algorithm is a generalization of Apriori – if at node N the 
algorithm discovers that the trie reduction technique is no longer effective, it 
switches to Apriori for the subtrie that starts from N, and if there are no frequent 
items that have dependencies, the algorithm switches to Apriori at the root node, 
i.e., it behaves like Apriori from the start. 

The experiment results indicate that the trie reduction technique is efficient 
for event log data sets, and often significantly smaller itemset trie is produced 
than in the case of Apriori. The results also indicate that the algorithm performs 
quite well when compared to FP-growth, and outperforms it in several cases 
(please see [Vaarandi 2004] for a detailed discussion). 

In order to implement the algorithm presented in this section, a tool called 
LogHound has been developed. The tool can be employed for mining frequent 
line patterns from raw event logs, but also for mining frequent event type 
patterns. For further information about LogHound and examples of detected 
patterns, the reader is referred to the research paper of this thesis [Vaarandi 
2004] and the LogHound online documentation.  

5. Conclusion 

This thesis discusses the problems of event correlation and data mining in the 
context of event log analysis, and presents novel tools and techniques for 
addressing these problems. The thesis also provides an overview of related work 
on event logging, event correlation, and data mining for event logs. The main 
contributions of this thesis are the following: 

� the development of Simple Event Correlator (SEC) that demonstrates the 
efficiency of a lightweight, platform independent, and open-source event 
correlator for monitoring event logs and processing event streams, 

� the proposal of a novel data clustering algorithm for mining patterns from 
event logs, 

� the proposal of a novel frequent itemset mining algorithm for mining 
frequent patterns from event logs. 

Event correlation is one of the most prominent real-time event processing 
techniques today. It has received a lot of attention in the context of network 
fault management over the past decade, and is becoming increasingly important 
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in other domains as well, including event log monitoring. A number of 
approaches have been proposed for event correlation, and a number of event 
correlation products are available on the market. Unfortunately, existing 
products are mostly expensive, platform-dependent, and heavyweight solutions 
that have complicated design, being therefore difficult to deploy and maintain, 
and requiring extensive user training. For these reasons, they are often 
unsuitable for employment in smaller IT systems and on network nodes with 
limited computing resources.  

The SEC event correlator presented in this thesis demonstrates that a 
lightweight and platform independent event correlator with an open-source 
status can be an efficient tool for monitoring event logs and processing event 
streams. Furthermore, it can also be a serious alternative to heavyweight and 
platform-dependent proprietary solutions. SEC has been adopted by many 
institutions over the past few years, ranging from companies with relatively 
small IT systems to large corporations with global networks. It has been applied 
for a wide variety of event correlation tasks in the domains of network fault and 
performance management, intrusion detection, log file analysis, event 
warehousing, etc. SEC has also been successfully employed with many 
applications and OS platforms. A number of research papers, online tutorials, 
and other documents have been published that describe the use of SEC for 
solving various event correlation problems. The user feedback data presented in 
this thesis reveal that the major advantages of SEC over other solutions are its 
open-source nature and free download status, ease of configuration, flexibility, 
applicability for a wide range of event correlation tasks, and ability to run on 
multiple platforms. 

Since event logs play a significant role in modern IT systems, the mining of 
patterns from event logs has been identified as an important system and network 
management task. Recently proposed mining approaches for accomplishing this 
task have often been based on some well-known algorithm for mining frequent 
itemsets, and they have focused on detecting frequent event type patterns. 
However, existing approaches have several shortcomings. Firstly, many of the 
proposed algorithms are variants of the Apriori algorithm which is inefficient 
for mining longer patterns. Secondly, recent research has concentrated on 
detecting frequent patterns, but the discovery of infrequent patterns is equally 
important, since this might reveal anomalous events that represent unexpected 
behavior of the system. Unfortunately, data clustering methods that can tackle 
this problem have seldom been applied for mining patterns from event logs. 
Thirdly, existing algorithms mostly focus on finding event type patterns, 
ignoring patterns of other sorts. In particular, the mining of line patterns 
provides the user a valuable insight into event logs, but this issue has received 
very little attention so far. 

In order to address the problems described above, this thesis proposes novel 
data clustering and frequent itemset mining algorithms for mining patterns from 
event logs. During their work, the algorithms take into account the special 
properties of event log data that have been discussed in this thesis. 

The data clustering algorithm proposed in this thesis has been designed for 
mining line patterns. It views event log lines as data points and clusters them, so 
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that each regular cluster corresponds to a certain frequently occurring line 
pattern and the cluster of outliers contains infrequent lines that could represent 
previously unknown fault conditions, or other unexpected behavior of the 
system that deserves closer investigation. The algorithm has been implemented 
in a tool called SLCT, and the experiment results indicate that the algorithm 
works fast, consumes little memory, and is able to detect many interesting 
patterns. SLCT has also been incorporated into the Sisyphus log analysis toolkit 
developed at Sandia National Laboratories. 

The frequent itemset mining algorithm proposed in this thesis has been 
designed for mining both event type and line patterns. The experiment results 
presented in this thesis suggest that none of the prominent Apriori, Eclat, and 
FP-growth frequent itemset mining algorithms is well-suited for processing 
event log data. In order to avoid dependency on the amount of main memory 
(the main weakness of Eclat and FP-growth), the proposed algorithm employs 
the breadth-first approach and the itemset trie data structure like Apriori, but 
uses special techniques for avoiding inherent weaknesses of Apriori. The 
algorithm has been implemented in a tool called LogHound, and the experiment 
results indicate that in many cases the algorithm works faster and consumes less 
memory than other algorithms. 

There are several interesting research problems that were not investigated in 
this thesis. One such issue is the generation of regular expressions or SEC rules 
from SLCT and LogHound, so that the discovered knowledge can be made 
available for SEC (or other event log monitoring solution) with minimal 
overhead. Another open problem is the creation of open-source event 
correlation tools employing non-rule-based correlation approaches. Techniques 
for making depth-first frequent itemset mining algorithms less dependent on the 
amount of main memory also deserve closer investigation, since such 
techniques make depth-first algorithms much more convenient for processing 
event log data. 
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Appendix A: SEC application experience 
 

Type of the 
company 

Location Description 
of the 
managed 
system 

How SEC is 
applied 

Advantages of 
SEC over 
other event 
correlation 
systems 

Banking 
card author-
ization 
center 

Europe 30 servers, 
routers, and 
firewalls 

Event correlation 
engine for NMS 
and IDS, log file 
monitoring and 
system 
monitoring. An 
important 
application of 
SEC is fraud 
detection. 

Straight-
forward, easy, 
and transparent 
configuration 
and rule 
definition 
system. 

Technology 
based 
marketing 
agency 

US 600 nodes 
across US and 
UK 

Gather and 
correlate service 
issues from Cisco 
CSS content 
switches. 

Power and 
control in the 
amount you 
choose. 

Financial 
institution 

US 6000 
workstations, 
400 servers, 
350 switches, 
250 routers 
(distributed 
over US plus 5 
other 
countries) 

Used as a central 
event correlation 
engine for HP 
OpenView NNM. 
Also used for 
central 
monitoring of 
syslog messages 
from Cisco 
devices. 

More flexible 
and 
customizable 
than other event 
correlation 
systems.  

Retail sales 
of consumer 
electronics 

US 8000 managed 
nodes; the 
company 
WAN covers 
continental 
US, Alaska, 
Hawaii, and 
US territories 

Network 
management with 
HP OpenView, 
log file 
monitoring, 
dynamic 
webpage 
generation, etc. 

SEC provides a 
low cost and 
efficient 
method to plug 
in event 
correlation and 
event 
management 
into HP 
OpenView. 
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Type of the 
company 

Location Description 
of the 
managed 
system 

How SEC is 
applied 

Advantages of 
SEC over 
other event 
correlation 
systems 

Telecom-
munications 
Carrier/ 
Provider 

US One of the 
largest 
international 
networks in 
the world 

Log file 
monitoring 
(collect and 
interpret alarms 
at call centers, 
and send a 
notification to a 
national support 
team). 

Good level of 
control over 
monitoring 
triggers. 

Network 
consulting 

Global (more 
than 30 
offices in US, 
Europe, and 
Asia) 

SEC is used in 
the US 
network of a 
major 
European car 
manufacturer 
(100 routers, 
300 switches) 

Used as a 
correlation 
engine for Cisco 
DFM platform 
and for Snort 
IDS. 

Provides event 
correlation 
without 
significant 
programming 
resources, runs 
on multiple 
platforms, 
integrates well 
with external 
scripting 
languages. 

Software 
develop-
ment, IT 
consulting 
and services 

Global 
(offices in 
Europe, US, 
Asia, 
Australia, 
South-
America) 

Global 
network, 
spread 
worldwide 
across the 
globe 

Used as a 
prototype for 
event correlation 
experiments. 

Free download 
status. 

Top 
wireless 
telephone 
company 

US Several 
thousand 
UNIX servers 

Log file 
monitoring 
located on each 
server feeding a 
central Nagios 
monitoring 
system. 

Free and open 
source, Perl-
based and thus 
cross-platform, 
capable of 
complex 
correlations. 

Managed 
security and 
hosting 
provider 

Pennsylvania, 
US 

About 200 
servers 

SEC is used on 
about 150 servers 
running Bastille 
Linux for real-
time log file 
monitoring and 
application 
against iptables 
software firewall. 

Support from 
the author and 
user 
community is 
available and 
prompt, ease of 
expansion – 
creating new 
rules for new 
situations is 
relatively easy. 
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Type of the 
company 

Location Description 
of the 
managed 
system 

How SEC is 
applied 

Advantages of 
SEC over 
other event 
correlation 
systems 

ISP Germany 500 routers 
and switches, 
300 servers, 
500 other 
active 
components, 
5000 customer 
routers which 
are monitored 
(the company 
operates in 
most parts of 
Germany) 

HP OpenView 
and SNMPTT are 
used for 
organizing 
incoming traps, 
and SEC will be 
used in both 
environments for 
correlating the 
traps. SEC will 
also be used for 
syslog log file 
and Snort IDS 
monitoring. (The 
company is still 
evaluating SEC.) 

Configuration 
files are ASCII-
like and can 
therefore be 
modified 
without any 
special 
software. SEC 
is also written 
in Perl and is 
extremely 
flexible - you 
can create all 
correlation 
combinations 
you need. 

Government 
organization 
(Patents and 
Trade 
Marks) 

Australia 1500 end 
nodes, 150 
servers, 10 
routers, 60 
switches, 6 
Frame Relay 
PVCs 

Event correlation 
for Cisco ISDN 
call accounting 
(from messages 
sent by routers to 
syslog servers), 
SNMP trap 
compression, 
passive service 
check result 
generation for 
Nagios. 

SEC is well 
documented, is 
actively 
developed, has 
a productive 
mailing list, is 
more reliable 
than Swatch. It 
is easy to 
integrate SEC 
with other 
applications. 

Internet 
media 
company 

NYC, US About 100 
servers with a 
dozen 
supporting 
routers, 
switches, and 
other devices 

The sending of 
e-mail pages on 
critical firewall 
events. 

SEC is GPL 
licensed, 
flexible, highly 
configurable, 
platform 
independent, 
and the 
documentation 
is sufficiently 
detailed. 

Manu-
facturer of 
medical 
equipment 
and 
software 

US Global 
network  

SEC is used in 
company 
products for 
event correlation 
(tracking system 
availability). 

Support for 
regular 
expressions, 
flexibility of 
maintaining 
variables and 
reporting in 
different ways. 
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Type of the 
company 

Location Description 
of the 
managed 
system 

How SEC is 
applied 

Advantages of 
SEC over 
other event 
correlation 
systems 

IT security 
manage-
ment 
company 

Luxembourg 3 servers and 
1 firewall 
(SEC is used 
for company 
clients who 
have larger 
infrastructures 
of 100+ 
servers) 

SEC is used for 
event correlation 
on central log 
servers integrated 
with company’s 
security 
solutions. 

Flexibility. 

E-mail 
service 
provider 

Colorado, US 300 
computers, 15 
managed 
switches, 5 
routers, 4 
UPS’s, 4 air 
conditioners 

Monitoring over 
300 devices. SEC 
is used to monitor 
AIDE, Snort IDS, 
Cisco, and HP 
OpenView ITO 
logs. 

Strong user 
support group, 
SEC is written 
in Perl which 
allows 
portability and 
extensibility, 
SEC’s feature 
set is rich and 
mature. 

A fire 
department 
(24 fire 
vehicles, 90 
square miles 
of rugged 
terrain, and 
5 of 
Colorado’s 
largest 
wildfires in 
the past 8 
years) 

Colorado, US 8 computers, 2 
routers, 1 
weather 
station 

SEC correlates 
events from all 
weather inputs 
and alerts 
firefighters and 
support personnel 
well ahead of 
impending storms 
which cause 
lightning-strike 
fires, flooding, 
and 
wildfire/RED-
FLAG 
conditions. 

Strong user 
support group, 
SEC is written 
in Perl which 
allows 
portability and 
extensibility, 
SEC’s feature 
set is rich and 
mature. 

Financial 
institution 

US More than 500 
routers, 750 
UNIX servers, 
and 500 
Windows 
servers 

Log monitoring 
for security 
operations. 

SEC is cost-
efficient, 
flexible, self-
contained, and 
provides event 
correlation 
functionality 
not otherwise 
found for 
security 
operations. 
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Type of the 
company 

Location Description 
of the 
managed 
system 

How SEC is 
applied 

Advantages of 
SEC over 
other event 
correlation 
systems 

Telecom 
company 

North 
America 

Large national 
network 
carrying both 
internal traffic 
as well as 
bandwidth 
resold for 
external 
customer 
traffic under a 
subsidiary 
company 

The company has 
employed SEC 
for the past 2.5 
years and the 
number of 
implementations 
has grown 
steadily. SEC is 
used as an event 
correlation 
engine for HP 
OpenView NNM, 
as a log file 
monitoring 
solution, and as 
an event 
warehousing 
solution in an 
Oracle database.  

The company 
originally 
considered 
several 
commercial 
event 
correlation 
systems, but 
SEC was found 
to be more 
robust and cost-
efficient. SEC 
is easy to 
maintain and 
configure, and 
it is able to 
handle a variety 
of events - 
video traffic 
events, cable 
modem traffic 
events, and 
layer 2 events 
(ATM, 
SONET, 
Ethernet). 

IT systems 
integrator 
and 
managed 
service 
provider 

Germany 40 managed 
nodes at one 
customer site 

Primary function 
of SEC is the 
correlation of 
security events 
(Cisco PIX and 
Checkpoint 
firewalls, UNIX, 
syslog events 
received from 
Windows 
servers). SEC is 
also used for 
monitoring 
purposes (event 
correlator for 
Nagios; 
monitoring 
routers, switches 
and servers). 

The way that 
contexts are 
implemented in 
SEC, the ease 
of integration 
with existing 
solutions, the 
ease of 
understanding  
how the tool 
works through 
excellent 
testing and 
debugging 
options. 
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Type of the 
company 

Location Description 
of the 
managed 
system 

How SEC is 
applied 

Advantages of 
SEC over 
other event 
correlation 
systems 

Lottery 
company 

Germany About 25 
servers and an 
Oracle 
database 

Event correlation 
for an alarming 
system. 

Simple, cost-
efficient, and 
easily 
customizable. 

Financial 
institution 

Slovakia About 300 
Cisco routers 
and switches, 
and about 300 
servers 

Log file 
monitoring for 
the central 
syslog-ng server, 
monitoring for 
web proxy error 
logs. 

SEC is free, 
easy to install 
and configure, 
and flexible 
(can be used in 
a variety of 
ways for a 
variety of 
applications). It 
is also fast and 
supports the 
Perl dialect of 
the regular 
expression 
language. 

ICT 
services and 
solutions 
provider 

Canada About 850 
nodes 

Event correlation 
for HP 
OpenView NNM. 

Varied 
capabilities of 
SEC and good 
documentation. 
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Appendix B: Formal proofs 
 
Lemma 1. If pr({fi1,...,fik}) � {fi1,...,fik}, then pr({fi1,...,fik-1}) � {fi1,...,fik-1}. 
Proof: Follows from pr({fi1,...,fik-1}) � pr({fi1,...,fik}) and 
f � pr({fi1,..,fik-1}), 
f < fik-1 < fik. 
 
Lemma 2. If a, b, c � F, a � pr(b), b � pr(c), then a � pr(c).  
Proof: Directly follows from the definition of the item dependency prefix. 
 
Lemma 3. pr(X \ pr(X)) = pr(X). 
Proof: Note that since (X \ pr(X)) � X, then also pr(X \ pr(X)) � pr(X). Let a � 
pr(X). According to Lemma 2, �b � (X \ pr(X)) so that a � pr(b), i.e., pr(X) � 
pr(X \ pr(X)). This means that pr(X \ pr(X)) = pr(X).  
 
Lemma 4. supp(X \ pr(X)) = supp(X). 
Proof: Note that according to the definition of the itemset dependency prefix 
supp(Y) = supp(Y 	 pr(Y)), and for any sets (A \ B) 	 B = A 	 B. Then 
according to Lemma 3 supp(X \ pr(X)) = supp((X \ pr(X)) 	 pr(X \ pr(X))) = 
supp((X \ pr(X)) 	 pr(X)) = supp(X 	 pr(X)) = supp(X). 
 
Lemma 5. The non-root nodes of the itemset trie constructed by the algorithm 
from section 4.6 correspond to all frequent itemsets that contain their 
dependency prefixes. 
Proof: By its definition, the algorithm does not create trie nodes for frequent 
itemsets that do not contain their dependency prefixes, i.e., all non-root nodes of 
the trie represent frequent itemsets that contain their dependency prefixes. Also, 
if {fi1,...,fik} is a frequent itemset and pr({fi1,...,fik}) � {fi1,...,fik}, then according to 
Lemma 1 pr({fi1,...,fik-1}) � {fi1,...,fik-1}, pr({fi1,...,fik-2}) � {fi1,...,fik-2}, ..., 
pr({fi1}) � {fi1} (i.e., pr({fi1}) = �). By its definition, the algorithm inserts nodes 
node({fi1}), node({fi1, fi2}), ..., node({fi1,...,fik}) into the itemset trie, i.e., the trie 
contains a node for any frequent itemset that contains its dependency prefix. 
 
Lemma 6. The itemset trie constructed by the algorithm from section 4.6 
represents all frequent itemsets, and there is a unique node for deriving each 
frequent itemset. 
Proof: Let X be a frequent itemset, and let Y = X 	 pr(X). According to Lemma 
5, node(Y) is present in the itemset trie. Since (Y \ pr(Y)) � X � Y, X can be 
derived from node(Y), and according to Lemma 4, supp(Y \ pr(Y)) = supp(X) = 
supp(Y). The node(Y) is unique, since if (Z \ pr(Z)) � X � Z and pr(Z) � Z, then 
according to Lemma 3 pr(Z \ pr(Z)) = pr(X) = pr(Z). On the other hand, from 
(Z \ pr(Z)) � X � Z it follows that ((Z \ pr(Z)) 	 pr(X)) � (X 	 pr(X)) � 
(Z 	 pr(X)). However, since pr(X) = pr(Z), then ((Z \ pr(Z)) 	 pr(Z)) � 
(X 	 pr(X)) � (Z 	 pr(Z)), and since pr(Z) � Z, then Z � (X 	 pr(X)) � Z. In 
other words, Y = Z. 
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Appendix C: Product web pages 
 
BMC Patrol – http://www.bmc.com/ 

CiscoWorks – http://www.cisco.com/ 

CLIPS – http://www.ghg.net/clips/CLIPS.html 

HP ECS – http://www.managementsoftware.hp.com/products/ecs/index.html 

HP OpenView – http://www.openview.hp.com/ 

LOGEC – http://www.logec.com/ 

LogHound – http://kodu.neti.ee/~risto/loghound/ 

Logsurfer – http://www.cert.dfn.de/eng/logsurf/ 

MySQL – http://www.mysql.com/ 

Nagios – http://www.nagios.org/ 

NerveCenter – http://www.open.com/products/nervecenter.jsp 

Net-SNMP – http://www.net-snmp.org/ 

NetCool – http://www.micromuse.com/ 

Oracle – http://www.oracle.com/ 

RuleCore – http://www.rulecore.com/ 

SEC – http://simple-evcorr.sourceforge.net/ 

Sisyphus – http://www.cs.sandia.gov/sisyphus/ 

SLCT – http://kodu.neti.ee/~risto/slct/ 

SMARTS – http://www.smarts.com/ 

SNMPTT – http://snmptt.sourceforge.net/ 

Snort – http://www.snort.org/ 

Swatch – http://swatch.sourceforge.net/ 

Syslog-ng – http://www.balabit.com/products/syslog_ng/ 

Tivoli – http://www.tivoli.com/ 
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