

Tools and Techniques for Event Log
Analysis

Risto Vaarandi

Faculty of Information Technology
Department of Computer Engineering
Chair of System Programming
TALLINN UNIVERSITY OF TECHNOLOGY

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Engineering

Supervisor:

Prof. Ahto Kalja
Department of Computer Engineering, Tallinn University of Technology

Opponents:

Dr. Gabriel Jakobson
Altusys Corporation, USA

Dr. Jaak Vilo
Institute of Computer Science, University of Tartu, Estonia

Dr. Aleksander Reitsakas
Cell Network, Estonia

Commencement: June 17, 2005

Declaration

Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted before for any degree or examination at any
other university.

Copyright 2005 Risto Vaarandi

 3

Table of contents

ABSTRACT .. 4

KOKKUVÕTE... 5

ACKNOWLEDGEMENTS .. 6

PART I - OVERVIEW.. 7
1. Introduction...9
2. Event logging and event log monitoring...10
3. Simple Event Correlator (SEC) ..13
3.1. Introduction..13
3.2. Related work on event correlation and the motivation for developing SEC......14
3.3. Description of SEC ..17
3.4. SEC application experience ...19
4. Pattern mining techniques for event logs ..19
4.1. Introduction..19
4.2. Related work on data clustering...23
4.3. Related work on frequent itemset mining ..25
4.4. The nature of event log data and the motivation for developing new pattern
mining algorithms...28
4.5. A clustering algorithm for mining line patterns ...28
4.6. A frequent itemset mining algorithm for mining event type and line patterns ..30
5. Conclusion ..31
References ..33
Appendix A: SEC application experience ..38
Appendix B: Formal proofs ..44
Appendix C: Product web pages...45

PART II - RESEARCH PAPERS .. 47

1. Risto Vaarandi. 2002. Platform Independent Tool for Local Event Correlation. Acta
Cybernetica 15(4), pp. 705-723.
2. Risto Vaarandi. 2002. Platform Independent Event Correlation Tool for Network
Management. Proceedings of the 8th IEEE/IFIP Network Operations and Management
Symposium, pp. 907-910.
3. Risto Vaarandi. 2002. SEC – a Lightweight Event Correlation Tool. Proceedings of
the 2002 IEEE Workshop on IP Operations and Management, pp. 111-115.
4. Risto Vaarandi. 2003. A Data Clustering Algorithm for Mining Patterns From Event
Logs. Proceedings of the 2003 IEEE Workshop on IP Operations and Management, pp.
119-126.
5. Risto Vaarandi. 2004. A Breadth-First Algorithm for Mining Frequent Patterns from
Event Logs. Proceedings of the 2004 IFIP International Conference on Intelligence in
Communication Systems, LNCS Vol. 3283, pp. 293-308.

 4

Abstract
This thesis discusses the problems of event correlation and data mining in the
context of event log analysis, and presents novel tools and techniques for
addressing these problems. Event logs play an important role in modern IT
systems, since they are an excellent source of information for monitoring the
system in real-time and for conducting retrospective event analysis.

Event correlation is one of the most prominent event processing techniques
today. It has received a lot of attention in the context of network fault
management over the past decade, and is becoming increasingly important in
other domains as well, including event log analysis. A number of approaches
have been proposed for event correlation, and a number of event correlation
products are available on the market. Unfortunately, existing products are
mostly expensive, platform-dependent, and heavyweight solutions that have
complicated design, being therefore difficult to deploy and maintain, and
requiring extensive user training. For these reasons, they are often unsuitable for
employment in smaller IT systems and on network nodes with limited
computing resources.

Data mining techniques are a common choice for knowledge discovery from
event logs, and the mining of patterns from event logs has been identified as an
important system and network management task. Recently proposed mining
approaches for accomplishing this task have often been based on some well-
known algorithm for mining frequent itemsets, and they have focused on
detecting frequent event type patterns. However, existing approaches have
several shortcomings. Firstly, many of the proposed algorithms are variants of
the Apriori algorithm which is inefficient for mining longer patterns. Secondly,
recent research has concentrated on detecting frequent patterns, but the
discovery of infrequent patterns is equally important, since this might reveal
anomalous events that represent unexpected behavior of the system.
Unfortunately, data clustering methods that can tackle this problem have seldom
been applied for mining patterns from event logs. Thirdly, existing algorithms
mostly focus on finding event type patterns, ignoring patterns of other sorts. In
particular, the mining of line patterns provides the user a valuable insight into
event logs, but this issue has received very little attention so far.

In order to address the problems described above, this thesis proposes novel
tools and techniques for event log analysis. The main contributions of this thesis
are the following:

� the development of Simple Event Correlator (SEC) that demonstrates the
efficiency of a lightweight, platform independent, and open-source event
correlator for monitoring event logs and processing event streams,

� the proposal of a novel data clustering algorithm for mining patterns from
event logs,

� the proposal of a novel frequent itemset mining algorithm for mining
frequent patterns from event logs.

 5

Kokkuvõte
Käesolev väitekiri käsitleb sündmuste logide analüüsiga seotud sündmuste
korrelatsiooni ja andmekaevandamise probleeme ning tutvustab uudseid
vahendeid ja tehnikaid nende probleemide lahendamiseks. Sündmuste logid
mängivad tänapäeva infosüsteemides tähtsat rolli, sest neis leiduv info on
äärmiselt oluline süsteemi monitooringuks reaalajas ning juba toimunud
sündmuste hilisemaks põhjalikumaks analüüsiks.

Sündmuste korrelatsioon on üks tähtsamaid sündmuste töötlemise tehnikaid,
mida on viimase kümnekonna aasta jooksul võrguhalduse kontekstis põhjalikult
uuritud ning mis on muutumas järjest olulisemaks ka teistes valdkondades,
kaasa arvatud logide analüüs. Sündmuste korrelatsiooniks on välja pakutud
mitmeid lähenemisi ning on loodud terve hulk tarkvaratooteid. Kahjuks on
olemasolevad tooted kallid, platvormist sõltuvad ning keeruka ülesehitusega
lahendused, mille tõttu nende installeerimine ja hooldus pole lihtsad ülesanded
ning nende kasutamine nõuab mahukat koolitust. Seetõttu on nad sageli
ebasobivad rakendamiseks väiksemates infosüsteemides ning piiratud
arvutusvõimsusega võrgusõlmedes.

Teadmiste otsimiseks sündmuste logidest rakendatakse tihti
andmekaevandamise tehnikaid ning logidest mustrite otsimine on oluline
süsteemi- ja võrguhalduse ülesanne. Senised lähenemised selle ülesande
lahendamiseks on enamasti põhinenud mõnel populaarsel sagedaste
elemendihulkade otsimise algoritmil ning peamiselt on kaevandatud sündmuste
tüüpidest koosnevaid mustreid. Kahjuks on senini kasutatud meetoditel mõned
olulised puudused. Esiteks, paljud neist põhinevad Apriori algoritmil, mis aga ei
sobi pikemate mustrite kaevandamiseks. Teiseks, olemasolevad meetodid on
keskendunud sageliesinevate mustrite otsimisele, kuid harvaesinevate mustrite
avastamine on sama oluline, sest see aitab kaasa anomaalsete sündmuste
leidmisele. Kuigi andmete klasterdamise algoritmid võimaldavad seda
probleemi lahendada, on neid harva rakendatud logidest mustrite
kaevandamiseks. Kolmandaks, senini kasutatud meetodid on loodud peamiselt
sündmuste tüüpidest koosnevate mustrite avastamiseks. Samas on eriti
reamustrite kaevandamine oluline ülesanne, mis võimaldab kasutajal paremini
mõista logis leiduva info iseloomu.

Lahendamaks ülal loetletud probleeme, tutvustab käesolev väitekiri uudseid
vahendeid ning tehnikaid sündmuste logide analüüsiks. Väitekirja teaduslik
panus on järgmine:

� Simple Event Correlator’i (SEC) väljatöötamine, mis demonstreerib
kergekaalulise, platvormist sõltumatu ja avatud lähtekoodiga sündmuste
korrelaatori sobivust ning efektiivsust sündmuste logide monitooringuks
ja sündmuste voogude töötlemiseks,

� uudse klasterdamisalgoritmi väljatöötamine sündmuste logidest mustrite
kaevandamiseks,

� uudse sagedaste elemendihulkade otsimise algoritmi väljatöötamine
sündmuste logidest mustrite kaevandamiseks.

 6

Acknowledgements
First of all, I would like to thank my supervisor Professor Ahto Kalja for
accepting me as his PhD student. Unfortunately, event correlation and data
mining for event logs are rather narrow fields of research and finding a good
supervisor is not an easy task. I had already received several refusals from
candidates from Estonia and other European countries when I was finally
fortunate enough to meet Ahto Kalja. I am also thankful to Ahto for his
patience, since on several occasions his student acted in a rather stubborn
manner.

During the studies, a PhD student almost always faces funding problems and
related paperwork (finding appropriate funding sources, writing applications for
scholarships, etc.), and I was not an exception. Here I would like to express my
gratitude to Dr. Margus Kruus, the head of the Department of Computer
Engineering, who as a skillful manager helped me with these matters and spent
many hours of his valuable time.

During the years of my PhD studies, I worked as a network and system
management engineer at SEB Eesti Ühispank, and many of my research
experiments were conducted in the bank’s IT environment. I am grateful to my
employer for the most generous financial support and for excellent in-house
research opportunities.

Two of my colleagues from the bank deserve a special recognition. CTO Dr.
Paul Leis actually suggested in late 1999 that I should pursue a PhD degree,
and backed my academic efforts throughout my studies. DSO Kaido Raiend,
my direct superior, accepted my activities at the university and always gave his
full support to my research projects. It is not an exaggeration to say that without
Paul and Kaido this thesis would have never been completed.

In addition to the financial support received from SEB Eesti Ühispank, this
work was also supported by the Archimedes Foundation, the Estonian Science
Foundation (grants 4067 and 5766), and the Estonian Information Technology
Foundation (EITSA).

A number of people helped me to develop SEC with their ideas and
thoughts, and I would especially like to thank (in alphabetic order) Al Sorrell,
James Brown, John P. Rouillard, Jon Frazier, Mark D. Nagel, Rick Casey, and
William Gertz. I deeply appreciate the help of all institutions that provided a
detailed feedback about the application of SEC in their environment. I also
wish to express my gratitude to Jon Stearley for his comments and suggestions
about SLCT.

Last but not least, I would like to thank my family for their support and
care – without it I would have never even started my PhD research.

 7

Part I - Overview

 8

 9

1. Introduction

Event logging and event logs play an important role in modern IT systems.
Today, many applications, operating systems, network devices, and other
system components are able to log their events to a local or remote log server.
For this reason, event logs are an excellent source for determining the health
status of the system, and a number of tools have been developed over the past
10-15 years for monitoring event logs in real-time. However, majority of these
tools can accomplish simple tasks only, e.g., raise an alarm immediately after a
fault message has been appended to a log file. On the other hand, quite many
essential event processing tasks involve event correlation – a conceptual
interpretation procedure where new meaning is assigned to a set of events that
happen within a predefined time interval [Jakobson and Weissman, 1995].

Event correlation is one of the most prominent real-time event processing
techniques today. It has received a lot of attention in the context of network
fault management over the past decade, and is becoming increasingly important
in other domains as well, including event log monitoring. A number of
approaches have been proposed for event correlation, and a number of event
correlation products are available on the market. Unfortunately, existing
products are mostly expensive, platform-dependent, and heavyweight solutions
that have complicated design, being therefore difficult to deploy and maintain,
and requiring extensive user training. For these reasons, they are often
unsuitable for employment in smaller IT systems and on network nodes with
limited computing resources.

So far, the rule-based approach has been frequently used for monitoring
event logs – event processing tasks are specified by the human analyst as a set
of rules, where each rule has the form IF condition THEN action. For example,
the analyst could define a number of message patterns in the regular expression
language, and configure the monitoring tool to send an SMS notification when a
message that matches one of the patterns is appended to the event log. Despite
its popularity, the rule-based approach has nevertheless some weaknesses –
since the analyst specifies rules by hand using his/her past experience, it is
impossible to develop rules for the cases that are not yet known to the analyst;
also, finding an analyst with a solid amount of knowledge about the system is
usually a difficult task. In order to overcome these weaknesses, various
knowledge discovery techniques have been employed for event logs, with data
mining methods being a common choice. It should be noted that while event log
monitoring tools conduct on-line (real-time) analysis of event log data, data
mining methods are designed for off-line analysis – an existing event log data
set is processed for discovering new knowledge, with the data set remaining
constant throughout the discovery process.

Recently proposed mining approaches for event logs have often been based
on some well-known algorithm for mining frequent itemsets, and they have
focused on detecting frequent event type patterns. However, existing
approaches have several shortcomings. Firstly, many of the proposed algorithms

 10

are variants of the Apriori algorithm [Agrawal and Srikant, 1994] which is
inefficient for mining longer patterns. Secondly, recent research has
concentrated on detecting frequent patterns, but the discovery of infrequent
patterns is equally important, since this might reveal anomalous events that
represent unexpected behavior of the system. Unfortunately, data clustering
methods that can tackle this problem have seldom been applied for mining
patterns from event logs. Thirdly, existing algorithms mostly focus on finding
event type patterns, ignoring patterns of other sorts. In particular, the mining of
line patterns provides the user a valuable insight into event logs, but this issue
has received very little attention so far.

The main contributions of this thesis are the following:
� the development of Simple Event Correlator (SEC) that demonstrates the

efficiency of a lightweight, platform independent, and open-source event
correlator for monitoring event logs and processing event streams,

� the proposal of a novel data clustering algorithm for mining patterns from
event logs,

� the proposal of a novel frequent itemset mining algorithm for mining
frequent patterns from event logs.

The remainder of this thesis overview paper is organized as follows – section
2 discusses event logging and event log monitoring issues; section 3 provides an
overview of related work on event correlation, and describes SEC and its
application experience; section 4 discusses common approaches for mining
patterns from event logs, related work on data clustering and frequent itemset
mining, and presents novel algorithms for mining patterns from event logs;
section 5 concludes the paper.

2. Event logging and event log monitoring

Before discussing event logging and event log monitoring issues in detail, this
section presents some introductory definitions. Event is a change in the system
state, with some events corresponding to system faults (e.g., a disk failure) and
some reflecting normal system activity (e.g., a successful user login). When a
system component encounters an event, the component could emit an event
message that describes the event. For example, when a disk of a server becomes
full, the server could generate a timestamped “Disk full” message for appending
to a local log file or for sending over the network as an SNMP trap. Event
logging is a procedure of storing event messages to the event log, where event
log is a regular file that is modified by appending event messages. (Although
sometimes databases of event messages are also called event logs, this thesis
has focused on flat-file event logs.) Log client is the system component that
emits event messages for event logging. In this thesis, the term event has often
been used for denoting event message when it is clear from the context.

In modern IT systems, event logs play an important role:
� since in most cases event messages are appended to event logs in real-

time as they are emitted by system components, event logs are an
excellent source of information for monitoring the system,

 11

� information that is stored to the event log can be useful for analysis at a
later time, e.g., for audit procedures or for retrospective incident analysis.

Event logging can take place in various ways. In the simplest case the log
client keeps the event log on a local disk and modifies it when an event occurs.
Unfortunately, event logs will be scattered across the system with this logging
strategy, each log possibly requiring separate monitoring or other analysis.
Furthermore, the strategy assumes the presence of a local disk which is not the
case for many network nodes (e.g., switches and routers).

In order to address these problems, a flexible logging protocol called syslog
was implemented for the BSD UNIX in the middle of 1980s. Over the past two
decades, the BSD syslog protocol has become a widely accepted standard
[Lonvick 2001] that is supported on many operating systems and is
implemented in a wide range of devices like routers, switches, laser printers,
etc. The syslog event message normally contains a message string, program
name, level, and facility. Program name identifies the name of the sending
application or process (e.g., ftpd or sendmail), level describes the severity of the
event (e.g., warning or emerg), while facility describes the event category (e.g.,
mail or auth). In order to log an event, the log client must create a valid syslog
event message and send it to a local or remote syslog server.

Figure 2.1 A sample centralized logging infrastructure

The communication between the client and the server takes place over the UDP
transport protocol (usually, local clients can also contact the server via a file
system socket). Unlike TCP, UDP does not provide guaranteed packet delivery,
but it is much faster and consumes less network bandwidth than TCP. This
makes the syslog protocol suitable for use in larger IT systems with many
network nodes (the well-known SNMP protocol is popular for the same reason).

syslog
server

Event logs

Router Switch
Laser
printer

syslog
event

messages

DB
appli-
cation

DB

 12

Also, since many applications, operating systems, and network devices support
the syslog protocol, it is a perfect choice for building a centralized logging
infrastructure. A centralized logging infrastructure comprises central log
server(s) with applications, servers, routers, switches, and other system
components acting as log clients (see Figure 2.1). Since event logs are now
stored on a few central servers (rather than being scattered across the system),
the event log monitoring and other analysis becomes much easier.

A central log server is usually a UNIX host which runs the syslogd daemon
as syslog server for receiving events from remote and local clients. The very
first implementation of syslogd was included in the 4.3BSD UNIX, and since
then a number of syslogd variants have been created for other platforms. After
receiving an event from a log client, the syslogd daemon classifies it using the
event parameters (usually level and facility), and processes the event according
to its class. Processing the event could mean appending it to a local event log,
relaying it to another server, forwarding it to an external program, or simply
discarding it.

Despite being widely used, the syslog protocol and many of its current
implementations have some drawbacks – the protocol runs on top of UDP only
and the log client can't choose a reliable transport protocol for event logging,
event messages are not encrypted before they are sent over the network, and the
syslogd daemon classifies events only using their level and facility. In order to
overcome these difficulties, a standard for reliable syslog transmission has been
proposed [New and Rose, 2001], and some syslog implementations support
event logging over TCP which provides guaranteed packet delivery and allows
one to use tunneling software for message encryption [Campi 2005]. As for the
event classification, the syslog-ng software suite contains a syslog server that is
able to distinguish between events by matching the sender host name, program
name, and message string with user-defined regular expressions.

Apart from the syslog-style event logging described above, event logs can
also be produced with the help of some other event management protocol that
was not specifically designed for logging. When a certain protocol is used for
sending event messages from system components to a central event
management server, the central event management software could write
received events to an external event log. For example, many network
management platforms and applications that rely on SNMP protocol (e.g., HP
OpenView NNM, Tivoli NetView, and snmptrapd daemon from the Net-SNMP
software package) are capable of producing external event log files.

Because of the importance of event logs as the source of system health
information, many tools have been developed over the past 10-15 years for
monitoring event logs in real-time. Swatch [Hansen and Atkins, 1993] was the
first such tool and is still used by many sites. Swatch monitors log files by
reading every event message line that is appended to the log file, and compares
it with rules where the conditional part of each rule is a regular expression (rules
are stored in a textual configuration file). If the regular expression of a certain
rule matches the event message line, Swatch executes the action part of the rule.
Actions include sending a mail, executing an external program, writing a
notification to the system console, etc. Swatch has also an option for ignoring

 13

repeated event messages for a given time interval.
Another popular tool for event log monitoring is Logsurfer [Ley and

Ellerman, 1996]. Like Swatch, Logsurfer uses rule-based approach for event
processing, employs regular expressions for recognizing input events, and
monitors log files by comparing appended message lines with its rules. Apart
from executing actions immediately when certain event messages are observed,
Logsurfer also supports contexts and dynamic rules. Context is a memory-based
buffer for storing event messages, and Logsurfer can report the content of a
context through an external program. Dynamic rule is a rule that has been
created from another rule with a special action.

In addition to commonly used Swatch and Logsurfer, a number of other tools
exist for monitoring event logs in real-time, and the interested reader is referred
to the Loganalysis website (http://www.loganalysis.org) for more information.
Apart from standalone monitoring tools, some system and network management
platforms like HP OpenView Operations (formerly called ITO) and Tivoli Risk
Manager have also capabilities for monitoring event logs. Nevertheless, in order
to use these capabilities, the whole platform must be deployed which is a
complex and time-consuming task.

3. Simple Event Correlator (SEC)

3.1. Introduction

According to the widely accepted definition by Jakobson and Weissman, event
correlation is a conceptual interpretation procedure where new meaning is
assigned to a set of events that happen within a predefined time interval
[Jakobson and Weissman, 1995]. During this procedure, original events might
be removed and new events might be created. For example, consecutive events
“Device internal temperature too high” and “Device unreachable” could be
replaced by an event “Device stopped working due to overheating”. A software
application that implements event correlation is called event correlator.

Jakobson and Weissman have considered the following common event
correlation operations in their work:

� Compression – reduce multiple occurrences of identical events into a
single event,

� Filtering – suppress an event if one of its parameters has a certain value,
� Suppression – suppress an event if a certain operational context is

present,
� Counting – counting and thresholding the number of repeated arrivals of

identical events,
� Escalation – in the presence of a certain operational context, assign a

higher value to a certain event parameter (e.g., severity),
� Generalization – replace an event with an event from its superclass,
� Specialization – replace an event with an event from its subclass,
� Temporal relationship – correlate events depending on the order and time

 14

of their arrival,
� Clustering – employ a complex correlation pattern where pattern

components are previously defined correlation operations, primary
network events, or external tests.

The use of event correlation allows one to reduce the number of event
messages sent to the system technicians, to identify root causes of the problems,
to derive new and more meaningful events from existing ones, etc. Without the
employment of event correlation techniques, event messages can easily
overwhelm the human, since in modern IT systems it is not rare that hundreds
of event messages are emitted by system components every second.

As an example of the importance of event correlation, consider a common
scenario involving linkdown and linkup event messages emitted by many
network devices. On one hand, network link faults are usually critical events
that require human intervention, but on the other hand, very short occasional
link outages (linkdown is immediately followed by linkup with no further
failures for the link) are frequent in today’s networks and normally don’t
deserve any attention. Therefore, it is highly impractical to forward linkdown
event messages to network technicians without previously correlating them. As
a solution for this problem, many sites use the following event correlation
scheme – if the linkdown event is not followed by linkup in t seconds, forward
the linkdown event message to network technicians; otherwise generate the
linkbounce event, and if more than n such events have been observed within the
last t’ seconds, generate the linkqualitylow event and forward it to network
technicians. In this way, technicians can focus on relevant network link issues
and are not overwhelmed by vast amounts of meaningless event messages.

One of the contributions of this thesis is the development of a lightweight,
platform independent, and open-source tool for event correlation called Simple
Event Correlator (SEC). SEC receives its input from regular files, named pipes,
and standard input, and can thus be employed as an event log monitoring
solution and be easily integrated with other applications. The rest of this section
is organized as follows – section 3.2 provides an overview of related work on
event correlation and discusses the motivation for developing SEC, section 3.3
gives an overview of SEC, and section 3.4 describes its application experience.

3.2. Related work on event correlation and the motivation for developing
SEC

Over the past decade, event correlation has received a lot of attention in the
context of network fault management. A number of approaches have been
proposed for event correlation, including rule-based [Froehlich et al., 2002],
codebook based [Yemini et al., 1996], Bayes network based [Meira 1997;
Steinder and Sethi, 2002], neural network based [Wietgrefe et al., 1997;
Wietgrefe 2002], and graph based [Gruschke 1998] methods. There are also a
number of event correlator products available on the market, like HP ECS,
SMARTS, NetCool, NerveCenter, LOGEC, and RuleCore.

Rule-based approach is a common approach for event correlation and has

 15

been employed in several products like HP ECS and RuleCore. Some rule-based
correlators closely resemble rule-based artificial intelligence (AI) systems
where rules represent the knowledge about the system (the Rete algorithm
[Forgy 1982] can be employed in such systems for finding matching rules
efficiently), while in the case of other rule-based correlators rules are used to
define the event correlation algorithm. One of the main advantages of the rule-
based event correlation is the fact that humans find it usually natural to express
their knowledge in terms of rules. For example, it is easy to describe temporal
relations between events with rules, while it could be cumbersome with other
methods. Furthermore, unlike some other event correlation methods (e.g., neural
network based correlation), the rule-based event correlation is clear and
transparent to the end user. As argued in [Rich and Knight, 1991], if end users
do not understand why and how the application reached its output, they tend to
ignore the results computed by that application.

Figure 3.1 The synergy between rule-based event correlation and data mining

It should be noted that the rule-based event correlation does not include the
learning process – past experience is not used for deriving new knowledge, and
all event correlation rules are specified by the human analyst. However, as
discussed in section 1, it is impossible to develop rules for the cases that are not
yet known to the analyst, and also, finding an analyst with a solid amount of
knowledge about the system is usually a difficult task. In order to address these
problems, various data mining methods have been proposed for knowledge
discovery from event logs. The TASA system developed at the University of
Helsinki [Klemettinen 1999] mines frequent event type patterns and derives
rules from detected patterns that describe temporal relations between event

Output
events

System
maintenance

personnel Event
correlation

analyst

Event
correlation

rules

Discovered
knowledge

Event flow
(real-time

monitoring)

Event flow
(off-line

processing)

Event
logs

Data
mining

application

Event
correlator

 16

types. The analyst then selects interesting rules and converts them to event
correlation rules. Burns et al. have developed the EventBrowser system [Burns
et al., 2001] that uses data mining and visualization techniques for finding event
patterns and for creating event correlation rules. The tools and algorithms
described in section 4 can also assist the analyst in discovering event correlation
knowledge. Figure 3.1 depicts the synergy between rule-based event correlation
and data mining for event logs.

Although event correlation has been long applied primarily for network fault
management, there is a clear trend to extend its use to other application domains
as well [Jakobson et al., 2000], most notably to security management and
intrusion detection. Staniford et al. have implemented Spice event correlation
engine for detecting stealthy portscans [Staniford et al., 2002], Julisch has
proposed an alarm clustering method for root cause analysis [Julisch 2003],
Morin and Debar have suggested the chronicles formalism for correlating
intrusion symptoms [Morin and Debar, 2003], Snort IDS [Roesch 1999] is able
to count and threshold events, etc.

Although event correlation systems that are currently available on the market
have been highly successful and are used worldwide by many larger companies,
they suffer from a number of drawbacks.

Firstly, existing systems are often heavyweight solutions that have
complicated design and user interface. This means that their deployment and
maintenance is time-consuming, and they require extensive user training. Also,
their complexity and resource requirements make them often unsuitable for
employment in smaller IT systems and for event correlation on nodes with
limited computing resources, e.g., for distributed event correlation in ad hoc and
sensor networks (nodes in such networks have limited hardware capabilities).

Secondly, since existing systems are mostly commercial, they are platform-
dependent – customers are supplied with program binaries that run on a limited
number of operating systems. Furthermore, several commercial systems have
been designed for one particular network management platform only. Some
systems also suffer from the fact that they have been designed specifically for
network fault management, and their application in other domains (including
event log monitoring) is cumbersome.

Thirdly, existing systems tend to be quite expensive. Therefore, many
academic institutions and smaller companies with more limited budget are
unable to use them for daily network and system management tasks or for
research experiments. Since a lot of research has been done in the field of event
correlation recently, some experimental correlation engine prototypes have been
created, but most such prototypes are not publicly available on the Internet.
Currently, there is no open-source event correlation engine available that would
be actively developed and mature enough for use in a production environment
(although RuleCore was initially an open-source project, it has become a
commercial product). One interesting event correlation related open-source
project is CLIPS, which is an environment for creation of rule-based expert
systems. Although CLIPS itself is not an event correlation tool, it has been
successfully used for constructing event correlation systems [Jakobson and
Weissman 1995; Jakobson et al., 2000].

 17

It should be noted that some event correlation operations are supported by
popular event log monitoring tools, e.g., Swatch supports event compression
and Logsurfer supports temporal relationship operations. Nevertheless, the
event correlation capabilities of current log monitoring tools are quite limited.

For the reasons above, quite many sites are using homegrown event
correlation solutions which often comprise a few application-specific shell
scripts. Each time a new application is set up, a new solution has to be
developed, which is rather impractical and time-consuming.

One of the main contributions of this thesis was the development of an open-
source platform independent tool for rule-based event correlation called Simple
Event Correlator (SEC) which addresses the problems described in this section.
The primary design goal of SEC was to fill the gap between homegrown and
commercial solutions, and to create a lightweight and easily customizable tool
that could be used for a wide variety of event correlation tasks, either standalone
or integrated with other applications.

3.3. Description of SEC

SEC is an open-source event correlation tool that uses rule-based approach for
processing events. This approach was chosen because of its naturalness of
knowledge representation and transparency of the event correlation process. The
main design objectives for SEC were platform independence, lightweight build
and ease of configuration, applicability for a wide variety of event correlation
tasks, and low consumption of system resources.

In order to achieve independence from operating system platforms, the
author decided to write SEC in Perl. Since Perl runs on almost every operating
system flavour and has become a standard part of many OS distributons, Perl
applications are able to run on a wide range of operating systems. In addition,
well-written Perl programs are fast and memory-efficient.

SEC does not need much disk space and is very easy to install, since its
current size is only about 250KB, and its configuration is stored in regular text
files (the size of each file is typically a few kilobytes). Also, since SEC is
written entirely in Perl and does not depend on other software packages, it can
be used instantly after its source distribution has been unpacked, without any
additional preparations (such as compiling and linking the source or installing
other software).

SEC receives its input events from file streams (before the 2.2.0 version only
one input stream was supported), and can produce output events by executing
user-specified shell commands, by writing messages to files or named pipes, by
calling precompiled Perl subroutines, etc. (note that output events can be sent
over the network to another instance of SEC, allowing one to configure
distributed event correlation schemes). Regular files, named pipes, and standard
input are currently supported as input, allowing one to use SEC as an event log
monitoring solution and to integrate it with any application that is able to write
its output events to a file stream. Applications that have an event management
API can also be integrated through simple plugins that employ API calls to read
the application’s event stream, and copy it to the standard output or file (a

 18

sample plugin for HP OpenView Operations is a part of the SEC package).
SEC configuration is stored in text files which can be created and modified

with any text editor. Each configuration file contains one or more rules, and
rulesets from different files are applied virtually in parallel. The 1.X versions of
SEC used a configuration file syntax where a rule definition was a list of values
separated by the bar symbol (|). Starting from the 2.0 version, a keyword-value-
like syntax is employed which is more readable and flexible.

An important part of the SEC rule is the event matching pattern. SEC
supports regular expressions, substrings, Perl subroutines, and truth values as
patterns. Support for regular expressions eases the configuration of SEC, since
many UNIX tools (like grep, sed, find, etc.) rely on regular expressions, and
therefore most system and network administrators are already familiar with the
regular expression language. Also, since majority of event log monitoring tools
use regular expression language for matching events, SEC can be deployed as a
log monitoring solution without any extra integration work. Starting from the
2.3.0 version, events can be passed to precompiled Perl subroutines for
recognition which allows the user to configure custom event matching schemes.

In addition to event matching pattern, most rule definitions specify a list of
actions, and optionally a Boolean expression of contexts (starting from the 2.1.7
version, Perl expressions can also be used as operands). The SEC contexts are
logical entities created during the event correlation process, with each context
having a certain lifetime (either finite or infinite). Contexts can be used for
activating and deactivating rules dynamically at runtime, e.g., if a rule definition
has (X OR Y) specified for its context expression and neither the context X nor
the context Y exist at a given moment, the rule will not be applied. Another
important function of the SEC contexts is to act as event stores – events of
interest can be associated with a context, and all the collected events supplied
for an external processing at a later time (this idea was borrowed from
Logsurfer).

Currently, SEC supports nine rule types that implement a number of
common event correlation operations. SEC actions were not only designed for
generating output events, but also for making rules to interact, for managing
contexts and storing events, for connecting external event analysis modules to
SEC, for executing Perl miniprograms and subroutines without forking a
separate process, etc. By combining several rules with appropriate action lists
and context expressions, more complex event correlation schemes can be
defined (see the research papers of this thesis [Vaarandi 2002a; Vaarandi
2002c] and the SEC online documentation for detailed examples). In order to
learn more about SEC performance, please see the case studies in the research
papers of this thesis [Vaarandi 2002a; Vaarandi 2002c].

This subsection contained only a brief overview of SEC and its capabilities.
For a thorough description, the interested reader is referred to the SEC online
documentation. There are also several other sources of information available
about SEC. “Working with SEC – the Simple Event Correlator” [Brown 2003]
is an online tutorial that not only provides a good introduction to SEC but also
covers a number of advanced issues like integrating SEC with MySQL. Chapter
5 of “Hardening Linux” [Turnbull 2005] discusses how to employ SEC for

 19

monitoring syslog log files. Also, recently a paper with a useful ruleset library
has been published that describes the application of SEC at the University of
Massachusetts at Boston [Rouillard 2004].

3.4. SEC application experience

The 1.0 version of SEC was released in March 2001. The first versions of SEC
were mainly used for accomplishing network management tasks, e.g., for
augmenting network management agents with event correlation capabilities
[Vaarandi 2002a] and for central event correlation at the HP OpenView NNM
management server [Vaarandi 2002b]. At the time of writing this thesis
overview paper (April 2005), SEC is applied for a wide variety of event
correlation tasks in the domains of network fault and performance management,
intrusion detection, log file analysis, event warehousing, etc. A number of
research papers have been published that describe the use of SEC in various
domains [Casey 2001; Dillis 2003; Gorton 2003; Meehan 2005; Rouillard 2004;
Sawall 2004].

Applications and database platforms that SEC has been integrated with
include HP OpenView Network Node Manager, HP OpenView Operations
(both management server and agents), CiscoWorks, BMC Patrol, Nagios,
SNMPTT, Snort IDS, Oracle, and MySQL. SEC has been used on a variety of
OS platforms, like Linux, Solaris, HP-UX, AIX, FreeBSD, Tru64 UNIX, Mac
OS X, and Windows2000.

SEC has been successfully adopted by institutions with various sizes, from
companies with relatively small IT systems to large corporations with global
networks. The author has received a detailed feedback from more than 20
institutions that use SEC (see Appendix A). The data in Appendix A reveal that
the major advantages of SEC over other solutions are its open-source nature and
free download status, ease of configuration, flexibility, applicability for a wide
range of event correlation tasks, and ability to run on multiple platforms.

4. Pattern mining techniques for event logs

4.1. Introduction

Since event logs play a significant role in modern IT systems, the mining of
patterns from event logs has been identified as an important system and network
management task [Klemettinen 1999; Ma and Hellerstein 2000; Mannila et al.,
1997; Pei et al., 2000; Srivastava et al., 2000; Zheng et al., 2002]. Recently
proposed mining algorithms have often been variants of the Apriori algorithm
for mining frequent itemsets [Klemettinen 1999; Ma and Hellerstein 2000;
Mannila et al., 1997; Zheng et al., 2002], and they have been mainly designed
for detecting frequent event type patterns [Klemettinen 1999; Ma and
Hellerstein 2000; Mannila et al., 1997; Pei et al. 2000; Zheng et al., 2002]. The
algorithms assume that each event from the event log has two attributes – time

 20

of event occurrence and event type – and the event log is considered as a
sequence E1,…,En, where Ei = (ti, ei) is an event, ei is the type of Ei, ti is the
occurrence time of Ei, and ti � tj when i < j.

Detected frequent patterns reveal what event types are more closely related,
e.g., the OutOfMemory event is always immediately followed by the Reboot
event, or events GET article193.html and GET article426.html often occur
together. The knowledge discovered during the mining can be used for various
purposes, like building rules for event correlation systems (see section 3.2 for a
detailed discussion), improving designs of web sites [Pei et al., 2000; Srivastava
et al., 2000], etc. In some cases, it might be useful to derive association rules
from detected patterns, since this representation of knowledge could be more
convenient to the end user. Each association rule has the following form – if a
certain combination of event types occurs within a certain time window, then
another combination occurs within another time window with a certain
probability. As an example, consider the following rule – if events A and B
occur within 20 seconds then event C also occurs within 60 seconds with the
probability of 95%. However, since the generation of association rules from
frequent patterns is a well-studied problem, this issue has not been investigated
in this thesis.

There are several ways for defining the frequent event type pattern, with two
definitions being most common. In the case of the first definition (e.g., see
[Klemettinen 1999]), the algorithm views the event log as a set of overlapping
windows, where each window starts from a time moment T and contains events
from a time frame of W seconds: {Ei | T � ti < T + W}, W > 0, T � tn,T + W > t1
(the window size W is given by the user). A certain combination of event types
is considered a frequent pattern if this combination is present at least in s
windows, where the threshold s is specified by the user.

Figure 4.1 A sample event log

In the case of the second definition (e.g., see [Pei et al., 2000]), the algorithm
assumes that the event log has been divided into non-overlapping slices
according to some criteria (e.g., events from the same slice were all issued by
the same host). A certain combination of event types is considered a frequent
pattern if this combination is present at least in s slices (the threshold s is given
by the user). Although the use of this definition requires more elaborate

Original event log:
(1, login), (2, automatic backup done), (3, logout), (13, automatic backup done),
(22, login), (23, automatic backup done), (24, logout)

Event log after it has been divided into slices:
(1, login), (3, logout) – issued by host A
(2, automatic backup done) – issued by host B
(13, automatic backup done) – issued by host C
(22,login), (24, logout) – issued by host D
(23, automatic backup done) – issued by host E

 21

preprocessing of the event log, it also eliminates the noise that could appear
when events from different slices are mixed.

As an example, consider the event log in Figure 4.1. If the threshold s is 2
and the window size W is 3, then event types login, automatic backup done, and
logout would form a frequent pattern according to the first definition (this
combination of event types is present in windows starting from time moments 1
and 22). On the other hand, it is obvious to the human observer that the
presence of the automatic backup done event near login and logout is purely
coincidental, since automatic backups don’t depend on user sessions at other
nodes. Fortunately, the second definition would not associate the automatic
backup done event with login and logout. As another example, if the goal is to
detect patterns in intrusion attempts from the same IP address, the first
definition is likely to yield many irrelevant patterns, while the second definition
produces relevant patterns only (if slices are formed by the source IP address of
intrusion attempts). In other words, in many cases the appropriate division of
the event log into slices helps the mining algorithm to focus more closely on its
task, and thus to save computing resources and to increase its output quality.
Also, event logs often contain data that help to arrange more closely related
events into slices (e.g., the program name field of syslog messages). For these
reasons, the second approach for defining the frequent event type pattern has
been employed in this thesis.

The order of events in windows or slices (occurrence time ascending order)
is often taken into account during the mining, since this could reveal causal
relations between event types – e.g., instead of an unordered set {DeviceDown,
FanFailure} the algorithm outputs a sequence FanFailure � DeviceDown.
However, as pointed out in [Klemettinen 1999], the mining of unordered
frequent event type sets is equally important. Due to network latencies, events
from remote nodes might arrive and be written to the log in the order that differs
from their actual occurrence order. Even if events are timestamped by the
sender, system clocks of network nodes are not always synchronized, making it
impossible to restore the original order of events. Also, in many cases events A
and B might occur in many windows or slices together, but their occurrence
order could vary (e.g., since they are not causally related). Therefore, the order
of events in a slice has not been considered important in this thesis.

Existing mining algorithms for event logs have several shortcomings. Firstly,
many of the algorithms are variants of Apriori which is inefficient for mining
longer patterns (see section 4.3 for a detailed discussion). Secondly, recent
research has focused on detecting frequent patterns, but as pointed out in [Burns
et al., 2001], the discovery of infrequent patterns is equally important, since this
might reveal anomalous events that represent unexpected behavior of the
system. For example, fault events are usually very infrequent in a well-
maintained system, but are nevertheless highly interesting. Unfortunately,
frequent itemset mining algorithms like Apriori don’t address this problem,
while data clustering methods that are able to tackle the problem have seldom
been applied for mining patterns from event logs.

Thirdly, existing algorithms mostly focus on finding event type patterns,
ignoring patterns of other sorts. However, since many event logs are textual and

 22

contain single line messages (e.g., this is the case for syslog log files), the
mining of line patterns provides the user a valuable insight into event logs.
Because event log messages rarely contain explicit event type codes (e.g.,
syslog messages do not have the event type parameter), it is difficult to mine
frequent event type patterns from a raw event log. Fortunately, it is possible to
derive event types from event log lines, since very often the events of the same
type correspond to a certain line pattern. For example, the lines

Router myrouter1 interface 192.168.13.1 down
Router myrouter2 interface 10.10.10.12 down
Router myrouter5 interface 192.168.22.5 down
represent the event type “router interface down”, and correspond to the line

pattern Router * interface * down.
Note that the mining of line patterns is not merely a preprocessing step, but

can be very useful for other purposes as well. For example, frequent line
patterns could help the human analyst to construct the event log model that
describes the normal system activity (because event messages that reflect the
normal system activity are usually frequent). The model can be employed for
event log monitoring – if an event message is appended to the log that does not
fit the model, it can be regarded anomalous and an alarm can be raised. On the
other hand, the detection of infrequent line patterns could help the analyst to
find previously unknown fault messages.

In order to address the problems discussed above, this thesis analyses the
suitability of existing prominent frequent itemset mining algorithms for event
log data, and proposes a novel algorithm for mining frequent event type and line
patterns from event logs.

Another contribution of this thesis is the study of data clustering algorithms
and the proposal of a new clustering algorithm for mining line patterns from
event logs. Clustering algorithms aim at dividing the set of objects into groups
(or clusters), where objects in each cluster are similar to each other (and as
dissimilar as possible to objects from other clusters). Objects that do not fit well
to any of the clusters detected by the algorithm are considered to form a special
cluster of outliers. When event log lines are viewed as objects, clustering
algorithms are a natural choice, because line patterns form natural clusters –
lines that match a certain pattern are all similar to each other, and generally
dissimilar to lines that match other patterns. Also, the cluster of outliers would
contain infrequent lines that could represent previously unknown fault
conditions, or other unexpected behavior of the system that deserves closer
investigation.

The rest of this section is organized as follows – sections 4.2 and 4.3 discuss
related work on data clustering and frequent itemset mining, section 4.4
describes the properties of event log data and the motivation for the
development of new algorithms for mining patterns from event logs, and
sections 4.5 and 4.6 present an overview of novel data clustering and frequent
itemset mining algorithms for event logs.

 23

4.2. Related work on data clustering

Clustering methods have been researched extensively over the past decades, and
many algorithms have been developed [Berkhin 2002; Hand et al., 2001; Jain et
al., 1999]. The clustering problem is often defined as follows: given a set of
points with n attributes in the data space �n, find a partition of points into
clusters so that points within each cluster are close (similar) to each other. In
order to determine, how close (similar) two points x and y are to each other, a
distance function d(x, y) is employed. Many algorithms use a certain variant of
Lp norm (p = 1, 2, ...) for the distance function:

As a clustering example, consider the k-medoids method which divides the set
of points into k clusters, where the value of k is given by the user. Each cluster
is represented by a certain point (medoid) from the cluster, and each point
belongs to the cluster represented by the closest medoid. The method starts with
an arbitrary selection of k medoids, and continues its work by replacing a
medoid with a non-medoid at each step, until the best clustering is achieved
(after each step, the quality of clustering is measured with a special function).
Variants of this method are used by a number of algorithms like PAM, CLARA,
and CLARANS [Ng and Han, 1994]. Another popular methods include the k-
means method (like k-medoids, it divides the set of points into k clusters, but
instead of medoids employs means for representing clusters), the divisive
method (it starts with a single cluster containing all points and splits clusters
recursively), the agglomerative method (it starts with single point clusters and
joins clusters recursively), etc. [Berkhin 2002; Jain et al., 1999]. It should be
noted that while some methods expect the user to specify the number of
clusters, other methods don’t have that restriction.

Today, there are two major challenges for traditional clustering methods that
were originally designed for clustering numerical data in low-dimensional
spaces (where usually n is well below 10).

Firstly, quite many data sets consist of points with categorical attributes,
where the domain of an attribute is a finite and unordered set of values [Ganti et
al. 1999, Guha et al., 2000]. As an example, consider a categorical data set with
attributes car-manufacturer, model, type, and color, and data points ('Honda',
'Civic', 'hatchback', 'green') and ('Ford', 'Focus', 'sedan', 'red'). Also, it is quite
common for categorical data that different points can have different number of
attributes. Therefore, it is not obvious how to measure the distance between data
points. Though several distance functions for categorical data have been
proposed, e.g., the Jaccard coefficient

||

||
),(

YX

YX
YXd

�

�
�

the choice of the right function is often not an easy task [Guha et al., 2000].

p n
i

p
iip yxyxd � � �� 1),(

 24

Note that event log lines can be viewed as points from a categorical data set,
since each line can be divided into words, with the n-th word serving as a value
for the n-th attribute. For example, the log file line Connection from 192.168.1.1
could be represented by the data point ('Connection', 'from', '192.168.1.1'). This
representation of event log data has also been used in this thesis.

Secondly, quite many data sets today are high-dimensional, where data
points can easily have tens of attributes. Unfortunately, traditional clustering
methods have been found not to work well when they are applied to high-
dimensional data. As the number of dimensions n increases, it is often the case
that for every pair of points there exist dimensions where these points are far
apart from each other, which makes the detection of any clusters almost
impossible (according to some sources, this problem starts to be severe when
n � 15) [Aggarwal et al., 1999; Agrawal et al., 1998; Berkhin 2002; Hinneburg
and Keim, 1999]. Furthermore, traditional clustering methods are often unable
to detect natural clusters that exist in subspaces of the original high-dimensional
space [Aggarwal et al., 1999; Agrawal et al., 1998]. For instance, data points
(1333, 1, 1, 99, 25, 2033, 1044), (12, 1, 1, 724, 667, 36, 2307), and (501, 1, 1,
1822, 1749, 808, 9838) are not seen as a cluster by many traditional methods,
since in the original data space they are not very close to each other. On the
other hand, they form a very dense cluster in the second and third dimension of
the space.

The dimensionality problems described above are also relevant to the
clustering of event log data, since event log data is typically high-dimensional
(i.e., there are usually more than just 3-4 words on every line), and most of the
line patterns correspond to clusters in subspaces. For example, the lines

log: connection from 192.168.1.1
log: RSA key generation complete
log: Password authentication for john accepted.
form a natural cluster in the first dimension of the data space, and

correspond to the line pattern log: *.
During past few years, several algorithms have been developed for clustering

high-dimensional data, like CLIQUE, MAFIA, CACTUS, and PROCLUS. The
CLIQUE [Agrawal et al., 1998] and MAFIA [Goil et al., 1999] algorithms
closely remind the Apriori algorithm for mining frequent itemsets [Agrawal and
Srikant, 1994]: they start with identifying all clusters in 1-dimensional
subspaces, and after they have identified clusters C1,...,Cm in k-1-dimensional
subspaces, they form cluster candidates for k-dimensional subspaces from
C1,...,Cm, and then check which of those candidates are actual clusters. Those
algorithms are effective in discovering clusters in subspaces, because they do
not attempt to measure distance between individual points, which is often
meaningless in a high-dimensional data space. Instead, their approach is density
based, where a clustering algorithm tries to identify dense regions in the data
space, and forms clusters from those regions. Unfortunately, the CLIQUE and
MAFIA algorithms suffer from the fact that Apriori-like candidate generation
and testing for higher-dimensional subspaces involves high runtime overhead
(see section 4.3 for a detailed discussion). The CACTUS algorithm [Ganti et al.,
1999] first makes a pass over the data and builds a data summary, then

 25

generates cluster candidates during the second pass using the data summary, and
finally determines the set of actual clusters. Although CACTUS makes only two
passes over the data and is therefore fast, it is susceptible to the phenomenon of
chaining (long strings of points are assigned to the same cluster) [Hand et al.,
2001], which is undesirable if one wants to discover line patterns from event
logs. The PROCLUS algorithm [Aggarwal et al., 1999] uses the k-medoids
method for detecting k clusters in subspaces of the original space. However, in
the case of event log data the number of clusters can rarely be predicted
accurately, and therefore it is not obvious what is the right value for k.

4.3. Related work on frequent itemset mining

Recently proposed mining approaches for event logs have often been based on
some well-known algorithm for mining frequent itemsets (like Apriori or FP-
growth) [Klemettinen 1999; Ma and Hellerstein 2000; Mannila et al., 1997; Pei
et al. 2000; Zheng et al., 2002]. In this subsection we will discuss the frequent
itemset mining problem and prominent algorithms for addressing this problem.

Let I = {i1,...,in} be a set of items. If X � I, X is called an itemset, and if
|X| = k, X is also called a k-itemset. A transaction is a tuple T = (tid, X) where
tid is a transaction identifier and X is an itemset. A transaction database D is a
set of transactions, and the cover of an itemset X is the set of identifiers of
transactions that contain X: cover(X) = {tid | (tid, Y) � D, X � Y}. The support
of an itemset X is defined as the number of elements in its cover: supp(X) =
|cover(X)|. The task of mining frequent itemsets is formulated as follows –
given the transaction database D and the support threshold s, find itemsets
{X | supp(X) � s} and their supports (each such set is called a frequent itemset).

The frequent itemset mining problem has received a lot of attention during
the past decade, and a number of mining algorithms have been developed. For
the sake of efficient implementation, most algorithms order the items according
to certain criteria, and use this ordering for representing itemsets. In the rest of
this section, we assume that if X = {x1,...,xk} is an itemset, then x1 < ... < xk.

The first algorithm developed for mining frequent itemsets was Apriori
[Agrawal and Srikant, 1994] which works in a breadth-first manner –
discovered frequent k-itemsets are used to form candidate k+1-itemsets, and
frequent k+1-itemsets are found from the set of candidates.

Recently, an efficient trie (prefix tree) data structure has been proposed for
the candidate support counting [Bodon 2003; Borgelt 2003]. Each edge in the
itemset trie is labeled with the name of a certain item, and when the Apriori
algorithm terminates, non-root nodes of the trie represent all frequent itemsets.
If the path from the root node to a non-root node N is x1,...,xk, N identifies the
frequent itemset X = {x1,...,xk} and contains a counter that equals to supp(X). In
the remainder of this section, we will use notations node(x1,...,xk) and node(X)
for N, and also, we will always use the term path to denote a path that starts
from the root node. Figure 4.2 depicts a sample transaction database and an
itemset trie (the support threshold is 2 and items are ordered in lexicographic
order a < b < c < d < e).

 26

Transaction ID Itemset
1 abcde
2 abc
3 bcd
4 abc
5 ab

Figure 4.2 A sample Apriori itemset trie

As its first step, the Apriori algorithm detects frequent 1-itemsets and creates
nodes for them. The nodes for candidate k+1-itemsets are generated as follows –
for each node node(x1,...,xk) at depth k all its siblings (nodes with the same
parent) will be inspected. If xk < yk for the sibling node(x1,...,xk-1,yk), then the
candidate node node(x1,...,xk,yk) will be inserted into the trie with its counter set
to zero. Since every subset of a frequent itemset must also be frequent, this
candidate generation procedure guarantees that all frequent k+1-itemsets are
present in the set of candidates. In order to find frequent k+1-itemsets, the
algorithm traverses the itemset trie for each transaction (tid, Y) � D, and
increments the counter in node(X) if X � Y, |X| = k + 1. After the database pass,
the algorithm removes nodes for infrequent candidate itemsets.

Although the Apriori algorithm works well when frequent itemsets contain
relatively few items (e.g., 4-5), its performance starts to deteriorate when the
size of frequent itemsets increases [Bayardo 1998; Han et al., 2000; Zaki 2000].
In order to produce a frequent itemset {x1,...,xk}, the algorithm must first
produce its 2k-2 subsets that are also frequent, and when the database contains
frequent k-itemsets for larger values of k (e.g., 30-40), the number of nodes in
the itemset trie could be very large. As a result, the runtime cost of the repeated
traversal of the trie will be prohibitive, and the trie will consume large amounts
of memory.

In recent past, several algorithms have been proposed that explore the search
space in a depth-first manner, and that are reportedly by an order of a magnitude
faster than Apriori. The most prominent depth-first algorithms for mining
frequent itemsets are Eclat [Zaki 2000] and FP-growth [Han et al., 2000]. An
important assumption made by Eclat and FP-growth is that the transaction
database fits into main memory. At each step of the depth-first search, the
algorithms are looking for frequent k-itemsets {p1,...,pk-1,x}, where the prefix
P = {p1,...,pk-1} is a previously detected frequent k-1-itemset. When looking for
these itemsets, the algorithms extract from the database the data describing
transactions that contain the itemset P, and search only this part of the database.
If frequent k-itemsets were found, one such itemset is chosen for the prefix of
the next step, otherwise the new prefix is found by backtracking. Since the
database is kept in main memory using data structures that facilitate the fast

2

2

2

2

3

3

5

4

4

4

4

d d

d

c

c

c b

d c b a

 27

extraction of data, Eclat and FP-growth can explore the search space faster than
Apriori.

The main difference between the Eclat and FP-growth algorithm is how the
transaction database is stored in memory. Eclat keeps item covers in memory
(this representation is also called the vertical database layout) which allows the
algorithm to calculate itemset supports with fast intersection operations, e.g.,
|cover(P) � cover({x})| equals to the support of P 	 {x}. FP-growth saves all
transactions into FP-tree which is a tree-like data structure [Han et al., 2000].
Each non-root node of the FP-tree contains a counter and is labeled with the
name of a certain frequent item (frequent 1-itemset). In order to build the FP-
tree, the FP-growth algorithm first detects frequent items and orders them in
support ascending order. Frequent items of each transaction are then saved into
FP-tree in reverse order as a path, by incrementing counters in existing nodes of
the path and creating missing nodes with counters set to 1 (infrequent items are
ignored, since they can’t belong to any frequent itemset). In that way, nodes
closer to the root node correspond to more frequent items, and are more likely
to be shared by many transactions, yielding a smaller FP-tree. In addition, nodes
corresponding to the same item are linked into a chain with node-links, and the
item header table holds a pointer to the first node of each such chain. This
allows the FP-growth algorithm to quickly locate all nodes for a certain item.
Figure 4.3 depicts a sample FP-tree data structure (the support threshold is 2 and
frequent items are ordered in support ascending order d < a < c < b).

Transaction ID Itemset
1 abcde
2 abc
3 bcd
4 abc
5 ab

Figure 4.3 A sample FP-tree data structure

Note that the nature of transaction data determines whether Eclat or FP-growth
is more efficient in terms of memory consumption. In some cases (e.g., see
[Goethals 2004]) Eclat could consume less memory, while the results presented
in this thesis suggest that the memory requirements of FP-growth are more
modest for event log data. Unfortunately, both Eclat and FP-growth can't be
employed for larger transaction databases which don't fit into main memory.

d:1

d:1

a:1

a:3

b:5

c:4 b

c

a

d

 28

Although some techniques have been proposed for addressing this problem
(e.g., the partitioning of the database), these techniques are often infeasible
[Goethals 2004]. In the next section we will show that this problem is also
relevant for event log data sets.

4.4. The nature of event log data and the motivation for developing new
pattern mining algorithms

In order to cluster event log lines, event logs are viewed as categorical data sets
in this thesis, and each event log line is considered to be a data point with words
of the line serving as attribute values. In order to apply frequent itemset mining
algorithms for event logs, event logs are viewed as transaction databases in this
thesis, and the task of mining frequent event type patterns or frequent line
patterns is formulated as the task of mining frequent itemsets. In the case of
event type patterns, event types act as items, and in the case of line patterns,
items are words from event log lines (the word positions are taken into account
during the mining).

The nature of input data plays an important role when designing an efficient
knowledge discovery algorithm. The experiments described in the research
papers of this thesis [Vaarandi 2003; Vaarandi 2004] have revealed the
following important properties of event log data:

� the number of items (or attribute values) in the data set can be quite large,
especially when line patterns are mined from raw event logs; however,
only few items (attribute values) are relatively frequent, and also, most
items (attribute values) appear only few times in the data set,

� frequent itemsets may contain many items, which means that Apriori is
not always adequate for processing event log data,

� there are often strong correlations between frequent items (attribute
values), i.e., items (attribute values) occur together in the same event log
slice or line many times in the data set.

In order to assess how well the Apriori, Eclat, and FP-growth algorithms are
suited for mining frequent patterns from event logs, a number of experiments
were conducted [Vaarandi 2004]. The experiment results indicate that all tested
algorithms are not entirely suitable for discovering patterns from event logs –
depth-first algorithms could face difficulties when they attempt to load the
transaction database into main memory, Apriori has a poor performance, and for
data sets containing larger frequent itemsets all algorithms are too slow. As
discussed in section 4.2, existing data clustering algorithms are also
inconvenient for processing event log data.

The following subsections will present an overview of efficient mining
algorithms that address the shortcomings of existing algorithms.

4.5. A clustering algorithm for mining line patterns

This thesis proposes an algorithm for clustering event log lines which makes
only a few passes over the data and is thus fast, and which detects clusters that

 29

are present in subspaces of the original data space. The algorithm relies on the
special properties of event log data discussed in section 4.4, and uses the density
based approach for clustering.

The data space is assumed to contain data points with categorical attributes,
where each point represents a line from an event log data set, and the attributes
of each point are the words from the corresponding line. The data space has n
dimensions, where n is the maximum number of words per line in the data set.
A region S is a subset of the data space, where certain attributes i1,...,ik
(1 � k � n) of all points that belong to S have identical values v1,…,vk: x � S,
xi1 = v1, ..., xik = vk. We call the set {(i1,v1),...,(ik,vk)} the set of fixed attributes of
region S. If k = 1 (i.e., there is just one fixed attribute), the region is called 1-
region. A dense region is a region that contains at least N points, where N is the
support threshold value given by the user.

The algorithm consists of three steps like the CACTUS algorithm [Ganti et
al., 1999] – it first makes a pass over the data and builds a data summary, and
then makes another pass to build cluster candidates, using the summary
information collected before. As a final step, clusters are selected from the set
of candidates.

During the first step of the algorithm (data summarization), the algorithm
identifies all dense 1-regions. Since this step could require large amounts of
memory (due to the large number of attribute values), the summary vector
technique is employed for reducing its memory cost [Vaarandi 2003].

After dense 1-regions have been identified, the algorithm builds all cluster
candidates during one pass. The data set is processed line by line, and when a
line is found to belong to m dense 1-regions that have fixed attributes
(i1,v1),...,(im,vm), then a region with the set of fixed attributes {(i1,v1),...,(im,vm)}
becomes a cluster candidate. If the cluster candidate is not present in the
candidate table, it will be inserted into the table with the support value 1,
otherwise its support value will be incremented. In both cases, the line is
assigned to the cluster candidate.

During the final step of the algorithm, the candidate table is inspected, and
all regions with support values equal or greater than the support threshold value
(i.e., regions that are guaranteed to be dense) are reported by the algorithm as
clusters. Because of the definition of a region, each cluster corresponds to a
certain line pattern, e.g., the cluster with the set of fixed attributes
{(1, 'Password'), (2, 'authentication'), (3, 'for'), (5, 'accepted')} corresponds to
the line pattern Password authentication for * accepted. Thus, the algorithm
can report clusters in a concise way by just printing out line patterns, without
reporting individual lines that belong to each cluster (the CLIQUE algorithm
reports clusters in a similar manner [Agrawal et al., 1998]).

The algorithm described above has been implemented in a tool called Simple
Logfile Clustering Tool (SLCT). Apart from identifying clusters, the tool can
also report outlier lines, refine wildcard parts of cluster descriptions, filter and
convert input lines with the help of regular expressions, etc. Further information
about SLCT and the underlying algorithm can be found in SLCT online
documentation and in one of the research papers of this thesis [Vaarandi 2003].
The paper also discusses the performance of SLCT and provides examples of

 30

detected patterns and anomalous event log lines.
Another recent paper [Stearley 2004] describes the use of SLCT for

analyzing syslog log files – SLCT has been incorporated into the Sisyphus log
analysis toolkit (developed at Sandia National Laboratories) and is employed
for automated message typing. The paper also compares the performance and
output of SLCT and Teiresias for several event log data sets (Teiresias is a well-
known pattern discovery algorithm originally developed for bioinformatics
[Rigoutsos and Floratos, 1998]), and concludes that SLCT is an efficient tool
for detecting message types.

4.6. A frequent itemset mining algorithm for mining event type and line
patterns

This thesis also proposes an efficient frequent itemset mining algorithm for
event logs that combines some of the features of previously discussed
algorithms and takes into account the properties of event log data. Since depth-
first Eclat and FP-growth are inherently dependent on the amount of main
memory, the proposed algorithm works in a breadth-first manner and employs
the itemset trie data structure (see section 4.3). In order to avoid the weaknesses
of Apriori, the algorithm uses several techniques for speeding up its work and
reducing its memory consumption.

The mining of frequent items is the first step of any breadth-first algorithm
which creates a base for further mining. Unfortunately, because the number of
items can be very large, the memory cost of this step is often quite high. In
order to overcome this problem, the algorithm employs the summary vector
technique [Vaarandi 2004].

Eclat and FP-growth are fast not only because of their depth-first search
strategy, but also because they load the transaction database from disk (or other
secondary storage device) into main memory. In order to speed up its work in a
similar way, the algorithm loads most frequently used transaction data into the
memory-based cache. Note that unlike Eclat and FP-growth, the algorithm does
not depend on the amount of main memory, since the amount of data stored to
the cache is controlled by the user [Vaarandi 2004].

As discussed in section 4.3, the Apriori algorithm is not well suited for
processing data sets which contain frequent k-itemsets for larger values of k,
since the itemset trie could become very large, making the runtime and memory
cost of the algorithm prohibitive. However, when there are many strong
correlations between frequent items in transactions, many parts of the Apriori
itemset trie are likely to contain information that is already present in other
parts. The algorithm proposed in this thesis employs a special technique for
reducing the size of the itemset trie, so that the trie would still represent all
frequent itemsets.

Let F = {f1,...,fn} be the set of all frequent items. We call the set dep(fi) =
{fj | fi � fj, cover({fi}) � cover({fj})} the dependency set of fi, and say that an item
fi has m dependencies if |dep(fi)| = m. A dependency prefix of the item fi is the

 31

set pr(fi) = {fj | fj � dep(fi), fj < fi}. A dependency prefix of the itemset {fi1,...,fik}
is the set pr({fi1,...,fik}) = 	j

k
=1 pr(fij).

The technique for reducing the size of the itemset trie can be summarized as
follows – if the itemset does not contain its dependency prefix, don't create a
node in the trie for that itemset (please see [Vaarandi 2004] for a detailed
discussion how the itemset trie is built). Although the resulting trie is often
much smaller than the Apriori itemset trie, all frequent itemsets can be easily
derived from its nodes (see Appendix B for formal proofs).

The algorithm can be further optimized – if the trie reduction technique was
not applied at node N for reducing the number of its child nodes, and node M is
a child of N, then the siblings of M contain all necessary nodes for the creation
of candidate child nodes for M in Apriori fashion. It is easy to see that with this
optimization the algorithm is a generalization of Apriori – if at node N the
algorithm discovers that the trie reduction technique is no longer effective, it
switches to Apriori for the subtrie that starts from N, and if there are no frequent
items that have dependencies, the algorithm switches to Apriori at the root node,
i.e., it behaves like Apriori from the start.

The experiment results indicate that the trie reduction technique is efficient
for event log data sets, and often significantly smaller itemset trie is produced
than in the case of Apriori. The results also indicate that the algorithm performs
quite well when compared to FP-growth, and outperforms it in several cases
(please see [Vaarandi 2004] for a detailed discussion).

In order to implement the algorithm presented in this section, a tool called
LogHound has been developed. The tool can be employed for mining frequent
line patterns from raw event logs, but also for mining frequent event type
patterns. For further information about LogHound and examples of detected
patterns, the reader is referred to the research paper of this thesis [Vaarandi
2004] and the LogHound online documentation.

5. Conclusion

This thesis discusses the problems of event correlation and data mining in the
context of event log analysis, and presents novel tools and techniques for
addressing these problems. The thesis also provides an overview of related work
on event logging, event correlation, and data mining for event logs. The main
contributions of this thesis are the following:

� the development of Simple Event Correlator (SEC) that demonstrates the
efficiency of a lightweight, platform independent, and open-source event
correlator for monitoring event logs and processing event streams,

� the proposal of a novel data clustering algorithm for mining patterns from
event logs,

� the proposal of a novel frequent itemset mining algorithm for mining
frequent patterns from event logs.

Event correlation is one of the most prominent real-time event processing
techniques today. It has received a lot of attention in the context of network
fault management over the past decade, and is becoming increasingly important

 32

in other domains as well, including event log monitoring. A number of
approaches have been proposed for event correlation, and a number of event
correlation products are available on the market. Unfortunately, existing
products are mostly expensive, platform-dependent, and heavyweight solutions
that have complicated design, being therefore difficult to deploy and maintain,
and requiring extensive user training. For these reasons, they are often
unsuitable for employment in smaller IT systems and on network nodes with
limited computing resources.

The SEC event correlator presented in this thesis demonstrates that a
lightweight and platform independent event correlator with an open-source
status can be an efficient tool for monitoring event logs and processing event
streams. Furthermore, it can also be a serious alternative to heavyweight and
platform-dependent proprietary solutions. SEC has been adopted by many
institutions over the past few years, ranging from companies with relatively
small IT systems to large corporations with global networks. It has been applied
for a wide variety of event correlation tasks in the domains of network fault and
performance management, intrusion detection, log file analysis, event
warehousing, etc. SEC has also been successfully employed with many
applications and OS platforms. A number of research papers, online tutorials,
and other documents have been published that describe the use of SEC for
solving various event correlation problems. The user feedback data presented in
this thesis reveal that the major advantages of SEC over other solutions are its
open-source nature and free download status, ease of configuration, flexibility,
applicability for a wide range of event correlation tasks, and ability to run on
multiple platforms.

Since event logs play a significant role in modern IT systems, the mining of
patterns from event logs has been identified as an important system and network
management task. Recently proposed mining approaches for accomplishing this
task have often been based on some well-known algorithm for mining frequent
itemsets, and they have focused on detecting frequent event type patterns.
However, existing approaches have several shortcomings. Firstly, many of the
proposed algorithms are variants of the Apriori algorithm which is inefficient
for mining longer patterns. Secondly, recent research has concentrated on
detecting frequent patterns, but the discovery of infrequent patterns is equally
important, since this might reveal anomalous events that represent unexpected
behavior of the system. Unfortunately, data clustering methods that can tackle
this problem have seldom been applied for mining patterns from event logs.
Thirdly, existing algorithms mostly focus on finding event type patterns,
ignoring patterns of other sorts. In particular, the mining of line patterns
provides the user a valuable insight into event logs, but this issue has received
very little attention so far.

In order to address the problems described above, this thesis proposes novel
data clustering and frequent itemset mining algorithms for mining patterns from
event logs. During their work, the algorithms take into account the special
properties of event log data that have been discussed in this thesis.

The data clustering algorithm proposed in this thesis has been designed for
mining line patterns. It views event log lines as data points and clusters them, so

 33

that each regular cluster corresponds to a certain frequently occurring line
pattern and the cluster of outliers contains infrequent lines that could represent
previously unknown fault conditions, or other unexpected behavior of the
system that deserves closer investigation. The algorithm has been implemented
in a tool called SLCT, and the experiment results indicate that the algorithm
works fast, consumes little memory, and is able to detect many interesting
patterns. SLCT has also been incorporated into the Sisyphus log analysis toolkit
developed at Sandia National Laboratories.

The frequent itemset mining algorithm proposed in this thesis has been
designed for mining both event type and line patterns. The experiment results
presented in this thesis suggest that none of the prominent Apriori, Eclat, and
FP-growth frequent itemset mining algorithms is well-suited for processing
event log data. In order to avoid dependency on the amount of main memory
(the main weakness of Eclat and FP-growth), the proposed algorithm employs
the breadth-first approach and the itemset trie data structure like Apriori, but
uses special techniques for avoiding inherent weaknesses of Apriori. The
algorithm has been implemented in a tool called LogHound, and the experiment
results indicate that in many cases the algorithm works faster and consumes less
memory than other algorithms.

There are several interesting research problems that were not investigated in
this thesis. One such issue is the generation of regular expressions or SEC rules
from SLCT and LogHound, so that the discovered knowledge can be made
available for SEC (or other event log monitoring solution) with minimal
overhead. Another open problem is the creation of open-source event
correlation tools employing non-rule-based correlation approaches. Techniques
for making depth-first frequent itemset mining algorithms less dependent on the
amount of main memory also deserve closer investigation, since such
techniques make depth-first algorithms much more convenient for processing
event log data.

References

Charu C. Aggarwal, Cecilia Procopiuc, Joel L. Wolf, Philip S. Yu, and Jong
Soo Park. 1999. Fast Algorithms for Projected Clustering. Proceedings of the
ACM SIGMOD International Conference on Management of Data, pp. 61-72.

Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. 1998. Automatic Subspace Clustering of High Dimensional Data for
Data Mining Applications. Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 94-105.

Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining
Association Rules. Proceedings of the 20th International Conference on Very
Large Data Bases, pp. 478-499.

Roberto J. Bayardo Jr. 1998. Efficiently Mining Long Patterns from Databases.
Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, pp. 85-93.

 34

Pavel Berkhin. 2002. Survey of Clustering Data Mining Techniques.
http://citeseer.nj.nec.com/berkhin02survey.html.

Ferenc Bodon. 2003. A fast APRIORI implementation. Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations.

Christian Borgelt. 2003. Efficient Implementations of Apriori and Eclat.
Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining
Implementations.

Jim Brown. 2003. Working with SEC – the Simple Event Correlator.
http://sixshooter.v6.thrupoint.net/SEC-examples/article.html

L. Burns, J. L. Hellerstein, S. Ma, C. S. Perng, D. A. Rabenhorst, and D. Taylor.
2001. A Systematic Approach to Discovering Correlation Rules For Event
Management. Proceedings of the 7th IFIP/IEEE International Symposium on
Integrated Network Management, pp. 345-359.

Nathan Campi. 2005. Central Loghost Mini-HOWTO.
http://www.campin.net/newlogcheck.html

Hugh R. Casey. 2001. The Simple Event Monitor, A Tool for Network
Management. MSc thesis, University of Colorado.

Christopher Dillis. 2003. IDS Event Correlation with SEC – The Simple Event
Correlator. http://www.giac.org/practical/GCIA/Christopher_Dillis_GCIA.pdf,
Technical Report, SANS Institute.

Charles L. Forgy. 1982. Rete: A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem. Artificial Intelligence 19(1982), pp. 17-37.

P. Froehlich, W. Nejdl, M. Schroeder, C. V. Damasio, L. M. Pereira. 2002.
Using Extended Logic Programming for Alarm-Correlation in Cellular Phone
Networks. Applied Intelligence 17(2), pp. 187-202.

Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. 1999.
CACTUS – Clustering Categorical Data Using Summaries. Proceedings of the
5th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 73-83.

Bart Goethals. 2004. Memory issues in frequent itemset mining. Proceedings of
the 2004 ACM Symposium on Applied Computing, pp. 530-534.

Sanjay Goil, Harsha Nagesh, and Alok Choudhary. 1999. MAFIA: Efficient and
Scalable Subspace Clustering for Very Large Data Sets. Technical Report No.
CPDC-TR-9906-010, Northwestern University.

Dan Gorton. 2003. Extending Intrusion Detection with Alert Correlation and
Intrusion Tolerance. Licentiate thesis, Chalmers University of Technology.

Boris Gruschke. 1998. Integrated Event Management: Event Correlation using
Dependency Graphs. Proceedings of the 9th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, pp. 130-141.

 35

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. 2000. ROCK: A Robust
Clustering Algorithm for Categorical Attributes. Information Systems 25(5), pp.
345-366.

Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without
Candidate Generation. Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pp. 1-12.

David Hand, Heikki Mannila, and Padhraic Smyth. 2001. Principles of Data
Mining. The MIT Press, ISBN: 0-262-08290-X.

Stephen E. Hansen and E. Todd Atkins. 1993. Automated System Monitoring
and Notification With Swatch. Proceedings of USENIX 7th System
Administration Conference, pp. 145-152.

Alexander Hinneburg and Daniel A. Keim. 1999. Optimal Grid-Clustering:
Towards Breaking the Curse of Dimensionality in High-Dimensional
Clustering. Proceedings of the 25th International Conference on Very Large
Data Bases, pp. 506-517.

A. K. Jain, M. N. Murty, and P. J. Flynn. 1999. Data Clustering: a Review.
ACM Computing Surveys 31(3), pp. 264-323.

G. Jakobson and M. Weissman. 1995. Real-time telecommunication network
management: Extending event correlation with temporal constraints.
Proceedings of the 4th International Symposium on Integrated Network
Management, pp. 290-301.

G. Jakobson, M. Weissman, L. Brenner, C. Lafond, C. Matheus. 2000. GRACE:
Building Next Generation Event Correlation Services. Proceedings of the 7th
IEEE/IFIP Network Operations and Management Symposium, pp. 701-714.

Klaus Julisch. 2003. Clustering intrusion detection alarms to support root cause
analysis. ACM Transactions on Information and System Security 6(4), pp. 443-
471.

Mika Klemettinen. 1999. A Knowledge Discovery Methodology for
Telecommunication Network Alarm Databases. PhD thesis, University of
Helsinki.

Wolfgang Ley and Uwe Ellerman. 1996. logsurfer(1) and logsurfer.conf(4)
manual pages. http://www.cert.dfn.de/eng/logsurf/

C. Lonvick. 2001. The BSD syslog protocol. RFC3164.

Sheng Ma and Joseph L. Hellerstein. 2000. Mining Partially Periodic Event
Patterns with Unknown Periods. Proceedings of the 16th International
Conference on Data Engineering, pp. 205-214.

H. Mannila, H. Toivonen, and A. I. Verkamo. 1997. Discovery of frequent
episodes in event sequences. Data Mining and Knowledge Discovery 1(3), pp.
259-289.

Francois Meehan. 2005. SNMP Trap Handling with Nagios. Sys Admin 14(3),

 36

pp. 41-44.

Dilmar Malheiros Meira. 1997. A Model For Alarm Correlation in
Telecommunication Networks. PhD thesis, Federal Unversity of Minas Gerais.

Benjamin Morin and Herve Debar. 2003. Correlation of Intrusion Symptoms: an
Application of Chronicles. Proceedings of the 6th Symposium on Recent
Advances in Intrusion Detection, pp. 94-112.

D. New and M. Rose. 2001. Reliable Delivery for syslog. RFC3195.

Raymond T. Ng and Jiawei Han. 1994. Efficient and Effective Clustering
Methods for Spatial Data Mining. Proceedings of the 20th International
Conference on Very Large Data Bases, pp. 144-155.

Jian Pei, Jiawei Han, Behzad Mortazavi-asl, and Hua Zhu. 2000. Mining Access
Patterns Efficiently from Web Logs. Proceedings of the 4th Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pp. 396-407.

Elaine Rich and Kevin Knight. 1991. Artificial Intelligence, 2nd edition.
McGraw-Hill, ISBN 0-07-052263-4.

I. Rigoutsos and A. Floratos. 1998. Combinatorial pattern discovery in
biological sequences: the TEIRESIAS algorithm. Bioinformatics 14(1), pp.
55-67.

Martin Roesch. 1999. Snort – Lightweight Intrusion Detection for Networks.
Proceedings of USENIX 13th System Administration Conference, pp. 229-238.

John P. Rouillard. 2004. Real-time Logfile Analysis Using the Simple Event
Correlator (SEC). Proceedings of USENIX 18th System Administration
Conference, pp. 133-149.

Chris Sawall. 2004. Auditing a Syslog Server Running Fedora Core 1.
http://www.giac.org/practical/GSNA/Chris_Sawall_GSNA.pdf, Technical
Report, SANS Institute.

Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning Tan.
2000. Web Usage Mining: Discovery and Applications of Usage Patterns from
Web Data. ACM SIGKDD Explorations 1(2), pp. 12-23.

Stuart Staniford, James A. Hoagland, Joseph A. McAlerney. 2002. Practical
Automated Detection of Stealthy Portscans. Journal of Computer Security 10
(1-2), pp. 105-136.

Jon Stearley. 2004. Towards Informatic Analysis of Syslogs. Proceedings of the
2004 IEEE International Conference on Cluster Computing.

M. Steinder and A. S. Sethi. 2002. End-to-end Service Failure Diagnosis Using
Belief Networks. Proceedings of the 8th IEEE/IFIP Network Operations and
Management Symposium, pp. 375-390.

James Turnbull. 2005. Hardening Linux. Apress, ISBN: 1-59059-444-4.

 37

Risto Vaarandi. 2002. Platform Independent Tool for Local Event Correlation.
Acta Cybernetica 15(4), pp. 705-723.

Risto Vaarandi. 2002. Platform Independent Event Correlation Tool for
Network Management. Proceedings of the 8th IEEE/IFIP Network Operations
and Management Symposium, pp. 907-910.

Risto Vaarandi. 2002. SEC – a Lightweight Event Correlation Tool.
Proceedings of the 2002 IEEE Workshop on IP Operations and Management,
pp. 111-115.

Risto Vaarandi. 2003. A Data Clustering Algorithm for Mining Patterns From
Event Logs. Proceedings of the 2003 IEEE Workshop on IP Operations and
Management, pp. 119-126.

Risto Vaarandi. 2004. A Breadth-First Algorithm for Mining Frequent Patterns
from Event Logs. Proceedings of the 2004 IFIP International Conference on
Intelligence in Communication Systems, LNCS Vol. 3283, pp. 293-308.

Hermann Wietgrefe. 2002. Investigation and Practical Assessment of Alarm
Correlation Methods for the Use in GSM Access Networks. Proceedings of the
8th IEEE/IFIP Network Operations and Management Symposium, pp. 391-404.

Hermann Wietgrefe, Klaus-Dieter Tuchs, Klaus Jobmann, Guido Carls, Peter
Froehlich, Wolfgang Nejdl, Sebastian Steinfeld. 1997. Using Neural Networks
for Alarm Correlation in Cellular Phone Networks. Proceedings of the
International Workshop on Applications of Neural Networks in
Telecommunications, pp. 248-255.

S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. 1996. High speed
and robust event correlation. IEEE Communications Magazine 34(5), pp. 82-90.

Mohammed J. Zaki. 2000. Scalable Algorithms for Association Mining. IEEE
Transactions on Knowledge and Data Engineering 12(3), pp. 372-390.

Qingguo Zheng, Ke Xu, Weifeng Lv, and Shilong Ma. 2002. Intelligent Search
of Correlated Alarms from Database Containing Noise Data. Proceedings of the
8th IEEE/IFIP Network Operations and Management Symposium, pp. 405-419.

 38

Appendix A: SEC application experience

Type of the
company

Location Description
of the
managed
system

How SEC is
applied

Advantages of
SEC over
other event
correlation
systems

Banking
card author-
ization
center

Europe 30 servers,
routers, and
firewalls

Event correlation
engine for NMS
and IDS, log file
monitoring and
system
monitoring. An
important
application of
SEC is fraud
detection.

Straight-
forward, easy,
and transparent
configuration
and rule
definition
system.

Technology
based
marketing
agency

US 600 nodes
across US and
UK

Gather and
correlate service
issues from Cisco
CSS content
switches.

Power and
control in the
amount you
choose.

Financial
institution

US 6000
workstations,
400 servers,
350 switches,
250 routers
(distributed
over US plus 5
other
countries)

Used as a central
event correlation
engine for HP
OpenView NNM.
Also used for
central
monitoring of
syslog messages
from Cisco
devices.

More flexible
and
customizable
than other event
correlation
systems.

Retail sales
of consumer
electronics

US 8000 managed
nodes; the
company
WAN covers
continental
US, Alaska,
Hawaii, and
US territories

Network
management with
HP OpenView,
log file
monitoring,
dynamic
webpage
generation, etc.

SEC provides a
low cost and
efficient
method to plug
in event
correlation and
event
management
into HP
OpenView.

 39

Type of the
company

Location Description
of the
managed
system

How SEC is
applied

Advantages of
SEC over
other event
correlation
systems

Telecom-
munications
Carrier/
Provider

US One of the
largest
international
networks in
the world

Log file
monitoring
(collect and
interpret alarms
at call centers,
and send a
notification to a
national support
team).

Good level of
control over
monitoring
triggers.

Network
consulting

Global (more
than 30
offices in US,
Europe, and
Asia)

SEC is used in
the US
network of a
major
European car
manufacturer
(100 routers,
300 switches)

Used as a
correlation
engine for Cisco
DFM platform
and for Snort
IDS.

Provides event
correlation
without
significant
programming
resources, runs
on multiple
platforms,
integrates well
with external
scripting
languages.

Software
develop-
ment, IT
consulting
and services

Global
(offices in
Europe, US,
Asia,
Australia,
South-
America)

Global
network,
spread
worldwide
across the
globe

Used as a
prototype for
event correlation
experiments.

Free download
status.

Top
wireless
telephone
company

US Several
thousand
UNIX servers

Log file
monitoring
located on each
server feeding a
central Nagios
monitoring
system.

Free and open
source, Perl-
based and thus
cross-platform,
capable of
complex
correlations.

Managed
security and
hosting
provider

Pennsylvania,
US

About 200
servers

SEC is used on
about 150 servers
running Bastille
Linux for real-
time log file
monitoring and
application
against iptables
software firewall.

Support from
the author and
user
community is
available and
prompt, ease of
expansion –
creating new
rules for new
situations is
relatively easy.

 40

Type of the
company

Location Description
of the
managed
system

How SEC is
applied

Advantages of
SEC over
other event
correlation
systems

ISP Germany 500 routers
and switches,
300 servers,
500 other
active
components,
5000 customer
routers which
are monitored
(the company
operates in
most parts of
Germany)

HP OpenView
and SNMPTT are
used for
organizing
incoming traps,
and SEC will be
used in both
environments for
correlating the
traps. SEC will
also be used for
syslog log file
and Snort IDS
monitoring. (The
company is still
evaluating SEC.)

Configuration
files are ASCII-
like and can
therefore be
modified
without any
special
software. SEC
is also written
in Perl and is
extremely
flexible - you
can create all
correlation
combinations
you need.

Government
organization
(Patents and
Trade
Marks)

Australia 1500 end
nodes, 150
servers, 10
routers, 60
switches, 6
Frame Relay
PVCs

Event correlation
for Cisco ISDN
call accounting
(from messages
sent by routers to
syslog servers),
SNMP trap
compression,
passive service
check result
generation for
Nagios.

SEC is well
documented, is
actively
developed, has
a productive
mailing list, is
more reliable
than Swatch. It
is easy to
integrate SEC
with other
applications.

Internet
media
company

NYC, US About 100
servers with a
dozen
supporting
routers,
switches, and
other devices

The sending of
e-mail pages on
critical firewall
events.

SEC is GPL
licensed,
flexible, highly
configurable,
platform
independent,
and the
documentation
is sufficiently
detailed.

Manu-
facturer of
medical
equipment
and
software

US Global
network

SEC is used in
company
products for
event correlation
(tracking system
availability).

Support for
regular
expressions,
flexibility of
maintaining
variables and
reporting in
different ways.

 41

Type of the
company

Location Description
of the
managed
system

How SEC is
applied

Advantages of
SEC over
other event
correlation
systems

IT security
manage-
ment
company

Luxembourg 3 servers and
1 firewall
(SEC is used
for company
clients who
have larger
infrastructures
of 100+
servers)

SEC is used for
event correlation
on central log
servers integrated
with company’s
security
solutions.

Flexibility.

E-mail
service
provider

Colorado, US 300
computers, 15
managed
switches, 5
routers, 4
UPS’s, 4 air
conditioners

Monitoring over
300 devices. SEC
is used to monitor
AIDE, Snort IDS,
Cisco, and HP
OpenView ITO
logs.

Strong user
support group,
SEC is written
in Perl which
allows
portability and
extensibility,
SEC’s feature
set is rich and
mature.

A fire
department
(24 fire
vehicles, 90
square miles
of rugged
terrain, and
5 of
Colorado’s
largest
wildfires in
the past 8
years)

Colorado, US 8 computers, 2
routers, 1
weather
station

SEC correlates
events from all
weather inputs
and alerts
firefighters and
support personnel
well ahead of
impending storms
which cause
lightning-strike
fires, flooding,
and
wildfire/RED-
FLAG
conditions.

Strong user
support group,
SEC is written
in Perl which
allows
portability and
extensibility,
SEC’s feature
set is rich and
mature.

Financial
institution

US More than 500
routers, 750
UNIX servers,
and 500
Windows
servers

Log monitoring
for security
operations.

SEC is cost-
efficient,
flexible, self-
contained, and
provides event
correlation
functionality
not otherwise
found for
security
operations.

 42

Type of the
company

Location Description
of the
managed
system

How SEC is
applied

Advantages of
SEC over
other event
correlation
systems

Telecom
company

North
America

Large national
network
carrying both
internal traffic
as well as
bandwidth
resold for
external
customer
traffic under a
subsidiary
company

The company has
employed SEC
for the past 2.5
years and the
number of
implementations
has grown
steadily. SEC is
used as an event
correlation
engine for HP
OpenView NNM,
as a log file
monitoring
solution, and as
an event
warehousing
solution in an
Oracle database.

The company
originally
considered
several
commercial
event
correlation
systems, but
SEC was found
to be more
robust and cost-
efficient. SEC
is easy to
maintain and
configure, and
it is able to
handle a variety
of events -
video traffic
events, cable
modem traffic
events, and
layer 2 events
(ATM,
SONET,
Ethernet).

IT systems
integrator
and
managed
service
provider

Germany 40 managed
nodes at one
customer site

Primary function
of SEC is the
correlation of
security events
(Cisco PIX and
Checkpoint
firewalls, UNIX,
syslog events
received from
Windows
servers). SEC is
also used for
monitoring
purposes (event
correlator for
Nagios;
monitoring
routers, switches
and servers).

The way that
contexts are
implemented in
SEC, the ease
of integration
with existing
solutions, the
ease of
understanding
how the tool
works through
excellent
testing and
debugging
options.

 43

Type of the
company

Location Description
of the
managed
system

How SEC is
applied

Advantages of
SEC over
other event
correlation
systems

Lottery
company

Germany About 25
servers and an
Oracle
database

Event correlation
for an alarming
system.

Simple, cost-
efficient, and
easily
customizable.

Financial
institution

Slovakia About 300
Cisco routers
and switches,
and about 300
servers

Log file
monitoring for
the central
syslog-ng server,
monitoring for
web proxy error
logs.

SEC is free,
easy to install
and configure,
and flexible
(can be used in
a variety of
ways for a
variety of
applications). It
is also fast and
supports the
Perl dialect of
the regular
expression
language.

ICT
services and
solutions
provider

Canada About 850
nodes

Event correlation
for HP
OpenView NNM.

Varied
capabilities of
SEC and good
documentation.

 44

Appendix B: Formal proofs

Lemma 1. If pr({fi1,...,fik}) � {fi1,...,fik}, then pr({fi1,...,fik-1}) � {fi1,...,fik-1}.
Proof: Follows from pr({fi1,...,fik-1}) � pr({fi1,...,fik}) and
f � pr({fi1,..,fik-1}),
f < fik-1 < fik.

Lemma 2. If a, b, c � F, a � pr(b), b � pr(c), then a � pr(c).
Proof: Directly follows from the definition of the item dependency prefix.

Lemma 3. pr(X \ pr(X)) = pr(X).
Proof: Note that since (X \ pr(X)) � X, then also pr(X \ pr(X)) � pr(X). Let a �
pr(X). According to Lemma 2, �b � (X \ pr(X)) so that a � pr(b), i.e., pr(X) �
pr(X \ pr(X)). This means that pr(X \ pr(X)) = pr(X).

Lemma 4. supp(X \ pr(X)) = supp(X).
Proof: Note that according to the definition of the itemset dependency prefix
supp(Y) = supp(Y 	 pr(Y)), and for any sets (A \ B) 	 B = A 	 B. Then
according to Lemma 3 supp(X \ pr(X)) = supp((X \ pr(X)) 	 pr(X \ pr(X))) =
supp((X \ pr(X)) 	 pr(X)) = supp(X 	 pr(X)) = supp(X).

Lemma 5. The non-root nodes of the itemset trie constructed by the algorithm
from section 4.6 correspond to all frequent itemsets that contain their
dependency prefixes.
Proof: By its definition, the algorithm does not create trie nodes for frequent
itemsets that do not contain their dependency prefixes, i.e., all non-root nodes of
the trie represent frequent itemsets that contain their dependency prefixes. Also,
if {fi1,...,fik} is a frequent itemset and pr({fi1,...,fik}) � {fi1,...,fik}, then according to
Lemma 1 pr({fi1,...,fik-1}) � {fi1,...,fik-1}, pr({fi1,...,fik-2}) � {fi1,...,fik-2}, ...,
pr({fi1}) � {fi1} (i.e., pr({fi1}) = �). By its definition, the algorithm inserts nodes
node({fi1}), node({fi1, fi2}), ..., node({fi1,...,fik}) into the itemset trie, i.e., the trie
contains a node for any frequent itemset that contains its dependency prefix.

Lemma 6. The itemset trie constructed by the algorithm from section 4.6
represents all frequent itemsets, and there is a unique node for deriving each
frequent itemset.
Proof: Let X be a frequent itemset, and let Y = X 	 pr(X). According to Lemma
5, node(Y) is present in the itemset trie. Since (Y \ pr(Y)) � X � Y, X can be
derived from node(Y), and according to Lemma 4, supp(Y \ pr(Y)) = supp(X) =
supp(Y). The node(Y) is unique, since if (Z \ pr(Z)) � X � Z and pr(Z) � Z, then
according to Lemma 3 pr(Z \ pr(Z)) = pr(X) = pr(Z). On the other hand, from
(Z \ pr(Z)) � X � Z it follows that ((Z \ pr(Z)) 	 pr(X)) � (X 	 pr(X)) �
(Z 	 pr(X)). However, since pr(X) = pr(Z), then ((Z \ pr(Z)) 	 pr(Z)) �
(X 	 pr(X)) � (Z 	 pr(Z)), and since pr(Z) � Z, then Z � (X 	 pr(X)) � Z. In
other words, Y = Z.

 45

Appendix C: Product web pages

BMC Patrol – http://www.bmc.com/

CiscoWorks – http://www.cisco.com/

CLIPS – http://www.ghg.net/clips/CLIPS.html

HP ECS – http://www.managementsoftware.hp.com/products/ecs/index.html

HP OpenView – http://www.openview.hp.com/

LOGEC – http://www.logec.com/

LogHound – http://kodu.neti.ee/~risto/loghound/

Logsurfer – http://www.cert.dfn.de/eng/logsurf/

MySQL – http://www.mysql.com/

Nagios – http://www.nagios.org/

NerveCenter – http://www.open.com/products/nervecenter.jsp

Net-SNMP – http://www.net-snmp.org/

NetCool – http://www.micromuse.com/

Oracle – http://www.oracle.com/

RuleCore – http://www.rulecore.com/

SEC – http://simple-evcorr.sourceforge.net/

Sisyphus – http://www.cs.sandia.gov/sisyphus/

SLCT – http://kodu.neti.ee/~risto/slct/

SMARTS – http://www.smarts.com/

SNMPTT – http://snmptt.sourceforge.net/

Snort – http://www.snort.org/

Swatch – http://swatch.sourceforge.net/

Syslog-ng – http://www.balabit.com/products/syslog_ng/

Tivoli – http://www.tivoli.com/

 46

 47

Part II - Research papers

