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Abstract—During the past two decades, event correlation has 

emerged as a prominent monitoring technique, and is essential 

for achieving better situational awareness. Since its introduction 

in 2001 by one of the authors of this paper, Simple Event 

Correlator (SEC) has become a widely used open source event 

correlation tool. During the last decade, a number of papers have 

been published that describe the use of SEC in various 

environments. However, recent SEC versions have introduced a 

number of novel features not discussed in existing works. This 

paper fills this gap and provides an up-to-date coverage of best 

practices for creating scalable SEC configurations.  
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I. INTRODUCTION 

During the past two decades, event correlation has become 
a prominent monitoring technique in many domains, including 
network fault monitoring, system administration, fraud 
detection, malicious insider and intrusion detection. Also, 
event correlation is one of the cornerstones for achieving better 
situational awareness. In order to address event analysis tasks 
in various domains, many commercial event correlation 
solutions have been created. Since its introduction in 2001 by 
one of the authors of this paper [1], Simple Event Correlator 
(SEC) has become a widely used open source alternative to 
commercial offerings. During the last decade, a number of 
papers have been published that describe the use of SEC in 
various environments, including academia [2], supercomputing 
centers [3–6], financial institutions [7, 8], telecom companies 
[8], and military [9]. SEC has been used for a wide range of 
purposes, including UNIX server log analysis [2], monitoring 
of supercomputer clusters [3–5], research experiments [6], 
correlation of large event volumes in centralized logging 
infrastructures [7], analysis of various security logs [9–11], 
IDS alarm classification [12], and network management [1, 8, 
13]. However, many past papers have provided generic 
overviews of SEC deployments, and do not cover its advanced 
features in sufficient details. Moreover, its recent versions have 
introduced a number of new features that existing works have 
not discussed. The current paper fills this gap and provides an 
up-to-date coverage of best practices for scalable deployment 
of SEC. The remainder of this paper is organized as follows – 
section II discusses related work, section III presents 
recommendations for creating scalable SEC configurations, 
and section IV concludes the paper. 

II. RELATED WORK 

Event correlation has received a lot of attention by many 
researchers, and most papers have adopted the following 
definition by Jakobson and Weissman [14] – event correlation 
is a conceptual interpretation procedure where new meaning is 
assigned to a set of events that happen within a predefined time 
interval. A number of approaches have been proposed for 
correlating events, including rule-based [14], graph-based [15], 
codebook-based [16], and Bayes network based [17] methods. 
In the industry, event correlation is implemented in most 
network management and SIEM frameworks, such as HP 
Openview, Tivoli, ArcSight, and AlienVault. In the open 
source domain, there are several log monitoring tools with 
some event correlation functionality – for example, Swatch 
[18] implements event counting and thresholding operations, 
while LogSurfer [19] supports pairwise event correlation. 
Furthermore, NxLog syslog server [20] directly borrows from 
SEC rule language and re-implements some SEC functionality 
in its core. ESPER [21] is a development toolkit which allows 
for augmenting Java and .NET applications with event 
correlation features. The first papers which provided detailed 
recommendations on deploying SEC were authored by 
Rouillard [2] and Vaarandi [10] a decade ago. The treatment by 
Vaarandi and Grimaila [11] is more recent, but does not 
address the creation of scalable configurations, and does not 
describe the new features of the current major release 
(introduced in 2012). In the following section, we will provide 
a detailed discussion of these topics. 

III. BEST PRACTICES AND RECOMMENDATIONS 

From its inception, SEC was designed to be as lightweight 
as possible. For this reason, it was implemented as a UNIX tool 
which incorporates event matching and parsing, event 
processing, and output generation into a single program. SEC 
can be used interactively in UNIX shell pipelines, executed as 
a daemon (or several daemons), connected to other applications 
over FIFOs, pipes, and network sockets, etc. Other design 
considerations were platform independence and ease of 
installation – since SEC is written in Perl and requires no 
additions to a standard Perl installation, it runs on all modern 
UNIX and Linux platforms. SEC uses rule-based approach for 
event correlation, where rules are arranged into sequences 
(rulesets), with each ruleset stored in a separate text file. Input 
events can be received from regular files, FIFOs, and standard 



input. Input events are typically matched with regular 
expressions, but for advanced matching and parsing custom 
Perl functions can be defined. SEC has been designed for real-
time event processing only and incoming events are tagged 
with timestamps of reception. In order to achieve fast memory-
based read-write data sharing between rules, event correlation 
operations, and other SEC entities, SEC has been implemented 
as a single-threaded tool. Nevertheless, it is straightforward to 
run many SEC instances with independent rulebases on the 
same host simultaneously. 

A. Joining Rules Into Event Correlation Schemes 

A number of web pages and papers provide examples of 
one SEC rule which correlates events independently. However, 
by using contexts, synthetic events, and other data sharing 
measures, several rules can be joined together into more 
powerful event correlation schemes. For example, the ruleset in 
Fig. 1 has been designed for processing Snort IDS syslog 
alarms, in order to detect repeated multifaceted attacks from 
the same host. The ruleset assumes the following alarm format: 

Oct 25 11:36:06 mysensor snort[12341]: [1:16431:5] SQL 
generic sql with comments injection attempt - GET parameter 
[Classification: Web Application Attack] [Priority: 1] {TCP} 
192.168.17.13:43148 -> 10.12.23.39:80 

 

# 

# The rules below are stored in /etc/sec/ids.sec 

# 

 

type=EventGroup 

ptype=RegExp 

pattern=snort\[\d+\]: \[(\d+:\d+):\d+\] .*\ 

 \{\w+\} ([\d.]+)(?::\d+)? -> [\d.]+(?::\d+)? 

context=!IP_$2_ALARM_$1 

count=alias ATTACKER_$2 IP_$2_ALARM_$1; \ 

  create TRIGGER_$1_$2 120 ( unalias IP_$2_ALARM_$1 ) 

init=create ATTACKER_$2 

end=delete ATTACKER_$2 

desc=attacking host $2 

action=event Multifaceted attack from $2 

thresh=10 

window=120 

 

type=SingleWithThreshold 

ptype=RegExp 

pattern=Multifaceted attack from ([\d.]+) 

desc=multifaceted attacks from $1 

action=pipe 'Continuous multifaceted attacks from $1' \ 

       /bin/mail root@example.com 

thresh=5 

window=1800  

Fig. 1. Ruleset for processing Snort IDS alarms.  

In order to start a SEC daemon for processing Snort IDS 
alarms that will be appended to /var/log/messages, the 
following command line can be used: 

/usr/bin/sec --conf /etc/sec/ids.sec --input /var/log/messages 
--detach 

The first rule depicted in Fig. 1 will match an incoming 
Snort IDS syslog alarm with the regular expression which sets 
the $1 match variable to alarm ID and $2 match variable to 
attacker IP address. For example, if the above example Snort 
alarm is observed, match variables will be set as $1=1:16431 
and $2=192.168.17.13. The rule will then substitute match 
variables in the Boolean expression given with the context 

field, and the expression evaluates TRUE if the context 
IP_192.168.17.13_ALARM_1:16431 does not exist. If that is 
the case, the rule will start an event correlation operation with 
the ID <rulefile name, rule offset in rulefile, value of desc 
field> which yields </etc/sec/ids.sec, 0, attacking host 
192.168.17.13>. The operation expects 10 events within 120 
seconds as defined with thresh and window fields of the rule. 
After the operation has been initialized, it first creates the 
context ATTACKER_192.168.17.13 (according to the init 
field). After that, the operation sets up an alias name 
IP_192.168.17.13_ALARM_1:16431 for this context as defined 
with the count field. The alias will exist for 120 seconds and 
will prevent the rule from matching further alarms with this 
particular combination of attacker IP and alarm ID. The alias 
lifetime is controlled by the trigger context 
TRIGGER_1:16431_192.168.17.13 which will expire after 120 
seconds and remove the alias. After creating the context and 
the alias, the operation sets its event counter to 1. 

When further events appear that match the first rule, the 
operation ID is calculated, and if the operation with the given 
ID does not exist, it is initialized as described above (since the 
operation ID contains the attacker IP, there will be a separate 
event counting and thresholding operation for each attacker). 
However, if the operation exists, it will receive the matching 
event and increment its event counter, and also create an alias 
for attacker IP and alarm ID, in order to avoid counting further 
alarms of same type for the given attacker within 120 seconds. 

If some operation has counted 10 alarms within the last 120 
seconds, this indicates the use of different attack techniques 
from some malicious host within a short time frame. Therefore, 
the operation generates the synthetic event Multifaceted attack 
from attackerIP (as defined with the action field of the rule), 
and consumes further alarms silently until the end of the event 
correlation window. Before terminating, the operation will 
delete the context ATTACKER_attackerIP (according to rule’s 
end field) which will also destroy all alias names associated 
with this context, in order to avoid interference with potential 
further operations for the same attacker IP. Note that alias 
lifetime triggers don’t need removal, since they take no action 
for non-existing aliases, and potential future recreation of the 
trigger will destroy any previous instance. If the operation has 
seen less than 10 alarms for the attacker within the 120 second 
window, the operation slides the window forward and 
continues. If no events remain in the window after sliding, the 
operation terminates. 

Synthetic events generated by operations started by the first 
rule in Fig. 1 are inserted into input buffer of SEC and treated 
similarly to regular input events from /var/log/messages. 
Therefore, these events will match the second rule in Fig. 1 
which will start a separate counting and thresholding operation 
for each attacker IP. If an operation observes 5 events within 
1800 seconds for the given attacker, it sends an e-mail warning 
about repeated multifaceted attacks to root@example.com.  

B. Advanced Event Matching with Perl Functions 

Although regular expressions allow for flexible parsing of 
input events, they have some limitations. Firstly, apart from 
string recognition it is hard to implement other types of 



matching, for example, arithmetic filters for numerical fields in 
input events. Secondly, regular expressions of different SEC 
rules work independently with no data sharing between them.  

For instance, the ruleset in Fig. 1 assumes that the attacker 
IP is always found in the source IP field of the alarm. 
However, a number of attacks manifest themselves through 
specific victim responses to attackers. As a result, the 
destination IP address field reflects the attacker, for example: 

Oct 25 14:19:03 mysensor snort[12341]: [1:2101201:11] 
GPL WEB_SERVER 403 Forbidden [Classification: Attempted 
Information Leak] [Priority: 2] {TCP} 10.12.23.39:80 -> 
192.168.11.229:52466  

Unfortunately, it is not straightforward to write a single 
regular expression for distinguishing external and home IP 
addresses in relevant alarm fields and setting match variables 
properly for all scenarios. In order to address complex event 
matching and parsing tasks, SEC allows for setting up custom 
Perl functions. Since user-defined code often benefits from 
external Perl modules, these can be loaded at SEC startup. Fig. 
2 presents sample rules for improving the ruleset from Fig. 1. 

 

type=Single 

ptype=SubStr 

pattern=SEC_STARTUP 

context=SEC_INTERNAL_EVENT 

desc=load Net::IP module and set $homenet 

action=eval %ret (require Net::IP); \ 

  if %ret () else ( logonly Net::IP not found; \ 

                    eval %o exit(1) ); \ 

  lcall %ret -> \ 

  ( sub { $homenet = new Net::IP('10.12.23.32/29'); } ) 

 

type=EventGroup 

ptype=PerlFunc 

pattern=sub { if ($_[0] =~ \ 

/snort\[\d+\]: \[(\d+:\d+):\d+\] .*\ 

 \{\w+\} ([\d.]+)(?::\d+)? -> ([\d.]+)(?::\d+)?/) { \ 

    my $ip = new Net::IP($2); \ 

    if ($ip->Net::IP::overlaps($homenet) \ 

    == $Net::IP::IP_A_IN_B_OVERLAP) \ 

  { return ($1, $3); } else { return ($1, $2); } \ 

} return 0; } 

context=!IP_$2_ALARM_$1 

count=alias ATTACKER_$2 IP_$2_ALARM_$1; \ 

  create TRIGGER_$1_$2 120 ( unalias IP_$2_ALARM_$1 ) 

init=create ATTACKER_$2 

end=delete ATTACKER_$2 

desc=attacking host $2 

action=event Multifaceted attack from $2 

thresh=10 

window=120  

Fig. 2. Using a Perl function for matching and parsing Snort IDS alarms. 

The first rule requires the presence of the --intevents option 
in SEC command line which forces the generation of special 
synthetic events at SEC startup, restarts, log rotations, and 
shutdown. In order to disambiguate these synthetic events from 
similarly looking regular input, SEC sets up a temporary 
context SEC_INTERNAL_EVENT which exists only during the 
processing of these events. The first rule matches the 
SEC_STARTUP event (generated at SEC startup) and loads the 
Net::IP Perl module. The rule also sets the Perl $homenet 
global variable to 10.12.23.32/29. If the module loading fails, 
the rule logs a relevant error message and terminates the SEC 
process by calling exit(1). The second rule uses a Perl function 
for matching IDS alarms which receives the alarm message as 

its first parameter. The function matches each alarm with the 
regular expression from Fig. 1, but in addition to match 
variables $1 and $2, match variable $3 is set to the destination 
IP address. Then the overlaps() method from Net::IP module is 
used for checking if the source IP address belongs to the home 
network (represented by $homenet variable that was set from 
previous rule). If that’s the case, the function returns alarm ID 
and destination IP, otherwise the function returns alarm ID and 
source IP. Outside the function, its return values are mapped to 
match variables $1 and $2, and thus the $2 variable always 
reflects the attacker IP in the rest of the rule definition.  

Perl functions can not only be used as patterns for event 
matching and parsing, but also as additional filters in rule 
context* fields. For example, the following rule fields match an 
SSH login failure syslog event if the connection originates 
from a privileged port on the client host (the port number of the 
client host is assigned to the $1 match variable, and the 
variable is passed to a Perl function for verifying its value is 
smaller than 1024): 

ptype=RegExp 

pattern=Failed [\w.-]+ for \w+ from [\d.]+ port (\d+) ssh2 

context=$1 -> ( sub { $_[0] < 1024 } ) 

In a similar way, many Perl functions can be defined for 
event matching and parsing which share global data structures 
(e.g., a hash table of malicious IP addresses). Since including 
longer functions in rule definitions might decrease rule 
readability, it is recommended to encapsulate such code into 
separate Perl modules and load them as depicted in Fig. 2. 

C. Using Named Match Variables and Match Caching 

When creating larger SEC rulebases with hundreds of rules, 
a number of rules might use identical regular expression or Perl 
function patterns. However, significant amount of CPU time 
could be spent for matching an event repeatedly with the same 
pattern. Moreover, the use of numeric match variables (e.g., $1 
and $2) assumes that the number of input event fields and their 
nature are known in advance, but this is not always the case. 
Finally, variable numbering can easily change if the pattern is 
modified, making rules harder to maintain. In order to address 
aforementioned issues, SEC supports named match variables 
and match caching as depicted by a ruleset in Fig. 3. This 
ruleset processes Linux iptables firewall syslog events which 
contain a number of fieldname-value pairs, for example: 

Oct 26 11:05:22 fw1 kernel: iptables: IN=eth0 OUT= 
MAC=XXX SRC=192.168.94.12 DST=10.12.23.39 LEN=52 
TOS=0x00 PREC=0x00 TTL=60 ID=61441 DF 
PROTO=TCP SPT=53125 DPT=23 WINDOW=49640 
RES=0x00 SYN URGP=0 

Depending on the nature of network traffic, iptables events 
can contain a variety of different fields, and writing one regular 
expression for all possible field combinations is intractable. On 
the other hand, the Perl function in the first rule takes 
advantage of iterative regular expression matching, in order to 
parse out each fieldname-value pair and store it into a Perl hash 
table. Since the function returns a reference to this hash table, 
named match variables $+{name} are created from all 
fieldname-value pairs in the table. For example, when the 



above example event is matched, $+{SRC} and $+{DST} 
variables are set to 192.168.94.12 and 10.12.23.39, 
respectively, and $+{SYN} is set to 1 (default when fieldname 
does not have a value). Therefore, the naming scheme for 
match variables is dynamic and fully determined by input data. 
After the event has been matched, the result of parsing is stored 
in the pattern match cache under the entry IPTABLES (the 
match caching is configured with the varmap field of the rule). 
Note that the pattern match cache is cleared before processing 
each new input event, and thus all cache entries always reflect 
parsing results for the currently processed event. Also, each 
cache entry is implemented as a Perl hash table which can be 
accessed directly from rule context* fields (see Fig. 3). 

 

type=SingleWithThreshold 

ptype=PerlFunc 

pattern=sub { my(%var); my($line) = $_[0]; \  

    if ($line !~ /kernel: iptables:/g) { return 0; } \  

    while ($line =~ /\G\s*([A-Z]+)(?:=(\S*))?/g) { \  

      $var{$1} = defined($2)?$2:1; \  

    } return \%var; }  

varmap=IPTABLES 

continue=TakeNext 

desc=too many blocked packets from IP $+{SRC} 

action=logonly 

thresh=100 

window=120 

 

type=SingleWithThreshold 

ptype=Cached 

pattern=IPTABLES 

context=IPTABLES :> ( sub { exists($_[0]->{"SYN"}) && \  

                            exists($_[0]->{"FIN"}) } ) 

desc=SYN-FIN flood attempt against IP $+{DST} 

action=logonly 

thresh=100 

window=120  

Fig. 3. Ruleset for processing Linux iptables firewall events. 

Since the continue field of the first rule is set to TakeNext, 
all matching input events are passed to the following rule for 
further processing. In order to save CPU time, the second rule 
matches incoming iptables events by doing a quick lookup for 
the IPTABLES entry in the pattern match cache (as specified 
with ptype=Cached and pattern=IPTABLES). If this entry is 
found, the :> operator in the context field passes a reference to 
the entry into a Perl function which verifies the presence of 
$+{SYN} and $+{FIN} variables under the entry. If both 
variables exist, the rule matches an event, and the $+{DST} 
variable in the desc field is set from the IPTABLES entry.  

Note that named match variables and match caching are 
also supported for regular expression patterns – for example, 
the regular expression Connection closed from (?<ip>[\d.]+) 
creates match variables $1 and $+{ip} which are both set to an 
IP address, and these variables can be cached with the varmap 
statement. 

D. Arranging rulesets hierarchically 

Each SEC ruleset is stored in a separate text file, and rules 
from one file are applied to an input event in the order they 
have been defined in the file. Also, by default rulesets from 
different files are applied independently against each input 
event. However, if only few rulesets are relevant for most input 
events, the use of larger rulebases involves considerable 

performance penalty, since an input event will be potentially 
matched against many irrelevant rulesets. 

SEC provides several options for addressing this problem. 
Firstly, if SEC has been started with the --intcontexts command 
line option, reception of any input event will trigger the 
creation of a temporary context that reflects the source of this 
event (e.g., _FILE_EVENT_/var/log/messages). After all rules 
have been applied against the input event, the context is deleted 
immediately. If some rules are designed to match events from 
specific sources only, such temporary contexts allow for 
preventing matching attempts for other sources. For example, 
the following rule fields match the regular expression with 
input events from /var/log/secure only (square brackets around 
_FILE_EVENT_/var/log/secure force the check for the 
presence of this context before regular expression matching): 

ptype=RegExp 

pattern=Connection closed from (?<ip>[\d.]+) 

context=[ _FILE_EVENT_/var/log/secure ] 

Also, one user-defined context can be set for multiple 
sources. Prior to SEC-2.7.6, _INTERNAL_EVENT context was 
always used for all synthetic events, while with more recent 
SEC versions cevent and cspawn actions can be employed for 
generating synthetic events with custom contexts. 

 

####################  

# the content of /etc/sec/main.sec  

 

type=Jump  

context=[ _FILE_EVENT_/var/log/messages ]  

ptype=PerlFunc  

pattern=sub { my(%var); my($line) = $_[0]; \  

    if ($line !~ /kernel: iptables:/g) { return 0; } \  

    while ($line =~ /\G\s*([A-Z]+)(?:=(\S*))?/g) { \  

      $var{$1} = defined($2)?$2:1; \  

    } return \%var; }  

varmap=IPTABLES  

desc=parse and route iptables events 

cfset=iptables-events  

 

type=Jump  

context=[ _FILE_EVENT_/var/log/secure ]  

ptype=RegExp  

pattern=sshd\[\d+\]: 

desc=route sshd events from /var/log/secure  

cfset=sshd-events  

 

#################### 

# the content of /etc/sec/fw.sec  

 

type=Options  

procallin=no  

joincfset=iptables-events 

 

type=SingleWithThreshold 

ptype=Cached 

pattern=IPTABLES 

desc=Too many blocked packets to IP $+{DST} 

action=logonly 

thresh=100 

window=120 

 

#################### 

# the content of /etc/sec/sshd.sec  

 

type=Options  

procallin=no  

joincfset=sshd-events 

 

…  

Fig. 4. An example hierarchical ruleset. 



Secondly, Jump rules can be used for submitting input 
events to specific rulesets for further processing, and rulesets 
can be configured to accept input from Jump rules only. Fig. 4 
depicts an example for three rulesets which are arranged into 
two-level hierarchy. 

From the three rulesets presented in Fig. 4, the ruleset from 
/etc/sec/main.sec is applied for recognizing input events and 
submitting them to two other rulesets which are labeled as 
iptables-events and sshd-events. Since both rulesets contain an 
Options rule with the procallin=no statement, they will only 
accept input events from Jump rules. As a result, the ruleset in 
/etc/sec/fw.sec is restricted to receive iptables syslog events 
from /var/log/messages which have already been parsed by the 
Jump rule. Also, the ruleset in /etc/sec/sshd.sec can only 
process SSH daemon syslog events from /var/log/secure. 

The above example illustrates that ruleset hierarchies can 
significantly reduce cost of event processing if many rules and 
rulesets are involved, especially if event parsing is 
accomplished in top levels of the hierarchy. In more general 
cases, rulesets can be arranged into graph-like structures which 
can introduce processing loops. Whenever SEC detects a loop 
during matching an event against rules, processing for the 
event is terminated. 

IV. PERFORMANCE DATA AND CONCLUSION 

We have used best practices and recommendations from the 
previous section in a production environment for two years. 
One of our SEC instances is running on a Linux server and 
using a hierarchically arranged rulebase of 375 rules, in order 
to correlate syslog events from many production servers. 
According to recently collected performance data for 172 days, 
this SEC instance has processed 1,636,805,087 events during 
14,881,059 seconds (109.9 events per second), and 
1,331,412,766 events have been matched by rules. During 
event processing, the SEC instance has consumed 448,150 
seconds of CPU time on a single core of an Intel Xeon X5650 
processor (about 3% of available CPU time on one core). 
When we briefly experimented with disabling the hierarchical 
rulebase arrangement, the CPU load increased 4-5 times. 

Although we have reviewed a number of powerful features 
of SEC for creating scalable configurations, many interesting 
topics have been left out from this paper due to space 
limitations. In particular, we haven’t provided in-depth 
discussion on individual rule types, advanced use of contexts 
for aggregating and reporting event data, actions for working 
with sockets, clock-triggered event correlation schemes, and 
integration with other monitoring applications. In order to get a 
detailed insight into those issues, the interested reader is 
referred to the SEC official documentation and mailing list, but 
also to past papers [2, 10, 11]. 
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