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Abstract—During the last two decades, the mining of message
patterns from textual event logs has become an important
security monitoring and system management task. A number
of algorithms have been developed for that purpose, and re-
cently several comparative studies of these algorithms have been
published. However, existing studies have several drawbacks like
the lack of performance evaluation on real-life data sets and the
use of suboptimal settings for evaluated algorithms. This paper
addresses these issues and evaluates commonly used log mining
algorithms on a number of security and system event logs.

Index Terms—pattern mining for event logs, event log analysis

I. INTRODUCTION

Nowadays, organizational networks and IT systems are
growing constantly and generating large volumes of events.
For example, in a recent paper we described a SIEM in-
stallation where a single IDS appliance produced more than
1,000 events per second [1]. Although a number of event
log management solutions and logging protocols have been
developed that support structured logging, producing event log
messages in unstructured and semi-structured formats is still
widespread. For instance, many devices and applications are
generating messages in traditional BSD syslog format which
specifies a few message fields like timestamp and hostname,
while the message text itself is a free-form string without any
structure [2]. For example, Fig. 1 displays such messages from
a network switch.

Port 1:16 link down
Port 3:43 link down
Port 1:12 link UP at speed 10 Mbps and half-duplex
Port 2:13 link UP at speed 1 Gbps and full-duplex
Port 3:14 link UP at speed (down) and half-duplex

Fig. 1. Example link down and link up messages from a network switch
(timestamps and hostnames have been omitted for brevity and privacy).

The messages from Fig. 1 can be summarized with the
following message patterns:

Port * link down
Port * link UP at speed * and *
Note that each wildcard * matches one or more words, and

such words are called variable words in the rest of this paper.
Also, the words that match constant (i.e., non-wildcard) parts
of the message pattern are called constant words.

The detection of such message patterns is an important
data mining problem, with identified patterns being useful

for several purposes like the development of event correlation
rules and automated anomaly detection [3]–[5]. During the last
two decades, a number of algorithms have been developed
for mining message patterns from event logs [4]–[12]. The
algorithms assume that event logs are files with textual content
and each line in the log file represents one message. During
event log processing, each message is split into words by
a predefined delimiter (usually whitespace characters). The
algorithms then attempt to identify variable words as precisely
as possible in order to produce meaningful message patterns.
Note that in some papers (e.g., [5]) message patterns are called
templates, but for the sake of consistency the term message
pattern is used in the rest of this paper.

Recently, several comparative studies have been published
for message pattern mining algorithms [13]–[16]. However,
past studies have several drawbacks. First, some studies were
limited to comparing the features of pattern mining algorithms
and did not evaluate the performance of algorithms on event
log data sets [15], [16]. Also, some studies with performance
evaluations were using suboptimal settings for algorithms,
and were conducted on preprocessed data sets which do not
represent the original log files from production systems [13].

This paper addresses the above shortcomings and evaluates
the performance of message pattern mining algorithms on real-
life security and system logs. The paper first measures the
pattern detection rate of algorithms (the ability to identify
meaningful patterns in log files), continuing with measuring
the CPU time and memory consumption of algorithms when
mining patterns from medium-sized and large log files.

The remainder of this paper is organized as follows – section
II discusses related work, section III presents the experiments
for measuring the performance of evaluated algorithms, and
section IV concludes the paper.

II. RELATED WORK

IPLoM is one of the earliest message pattern mining al-
gorithms that is based on a divisive clustering method [7].
Initially, IPLoM considers all messages in an event log as
members of a single cluster. During its first step, IPLoM splits
the initial cluster by assigning messages with the same number
of words to the same cluster. During the second step, each
cluster is divided further by identifying the word position with
the least number of unique words, and splitting the cluster by



these unique words. During the third step, clusters are split
based on associations between word pairs. Finally, a message
pattern is derived for each cluster.

LogCluster is another message pattern mining algorithm that
is based on a clustering method [4], [11]. LogCluster begins
its work by identifying frequent words which appear in at least
s event log lines, where s is the support threshold provided by
the user. LogCluster then makes another pass over the event
log, extracting frequent words from each event log line, and
assigning the line to the cluster candidate that is identified by
the sequence of extracted frequent words. During this process,
a message pattern is maintained for each cluster candidate.
Finally, cluster candidates which cover at least s event log
lines are selected as clusters, and their message patterns are
reported to the end user. Also, event log lines without a cluster
are assigned to the cluster of outliers for identifying rare and
potentially anomalous messages. Unlike IPLoM, LogCluster is
able to generate a message pattern for similar messages even
if they do not have the same number of words. For example,
for link up messages from Fig. 1, LogCluster is able detect
the pattern Port *{1,1} link UP at speed *{1,2} and *{1,1},
where the wildcard *{1,1} matches one variable word and the
wildcard *{1,2} either one or two variable words.

The LenMa algorithm [10] assumes that the event log mes-
sages which correspond to the same message pattern contain
the same number of words. For distinguishing constant words
from variable words, the algorithm uses the following heuristic
– the constant word has the same length for all messages that
match the same pattern, while variable words are likely to have
different lengths. For detecting the message patterns, LenMa
builds a word length vector for each log message, joining
log messages with the same number of words into the same
cluster if the cosine similarity of their word length vectors
is higher than user-given threshold. After a new message has
been joined with the cluster, the message pattern of the cluster
is updated.

The AEL algorithm [9] first applies several heuristics for
detecting variable words in log messages. The algorithm then
divides event log messages into bins, so that each bin contains
the messages with the same number of words and variable
words. Finally, one or more message patterns are derived for
each bin.

Similarly to IPLoM, LenMa and AEL, the Drain algorithm
[5] assumes that the messages corresponding to the same
pattern must have the same number of words. Drain makes
a single pass over the event log, using a parse tree with a
fixed depth where message patterns are created and updated
in leaf nodes. One of the main purposes of the parse tree is to
limit the number of message patterns than need the inspection
and update, so that for every event log message the patterns
only in one leaf node would be processed.

The Spell algorithm [8] maintains longest common sub-
sequences (LCSs) of words for event log messages while
processing the event log. For each event log message, it is
either merged with the most similar LCS object that involves
an update of the object, or a new LCS object is created if the

similarity with existing objects is below user-given threshold
τ . With each LCS object, wildcards * are maintained which
describe the location of variable words, so that each LCS
object represents a message pattern.

LogSig [6] is an event log clustering algorithm which begins
with converting each event log message into a set of word
pairs from that message. Local search function is then used
for finding an optimal partition of event log messages into
clusters, so that messages in each cluster would share as much
word pairs as possible. Finally, a message pattern is generated
for messages in each cluster.

The work by Zhu et al. [13] was one of the earliest
comparative studies of event log pattern mining algorithms,
with its findings being presented in several later studies (e.g.,
[14], [15]). The work included an analytical comparison of
evaluated algorithms and their accuracy assessment on 16
small data sets of 2,000 event log messages. Before the
experiments, a number of preprocessing rules were applied
to data sets for replacing variable parts in messages (such as
IP addresses, numbers, etc.). The algorithms with the highest
accuracy were then selected for further testing on three larger
1GB data sets. According to tests, Drain, IPLoM and AEL
were the fastest algorithms, while other algorithms did not
scale well to larger event logs. Data sets and tools used during
the experiments were publicly released in LogPAI [17] and
Loghub [18] repositories.

Copstein et al. [14] researched how well the patterns de-
tected from security logs by different algorithms are reflecting
a clear heuristic (e.g., whether a detected pattern reflects some
network protocol). For establishing the heuristic for a pattern,
constant words from the pattern were extracted and compared
with regular expression based rules. Copstein et al. also re-
executed accuracy related experiments from the work by Zhu
et al. [13], using publicly available data sets and tools [17].
According to Copstein et al., significant differences of more
than 10% were observed for the accuracy of several algorithms
on some data sets [14]. While in most cases the number
of such data sets was 1–3 out of 16, the largest number of
differences was observed for LogSig, with experiments on
five data sets producing a different result, and one experiment
not completing in a reasonable amount of time. Given the
deterministic nature of tested algorithms, the authors were
unable to establish a clear reason for significant differences
of over 10% in measured accuracy [14].

In a recent study [19], Pihelgas has pointed out several
other shortcomings of the work by Zhu et al. [13]. First,
the analytical comparison of evaluated algorithms provided
several incorrect statements about the LogCluster algorithm.
More importantly, LogCluster was evaluated with suboptimal
input settings that lead to poor performance.

Other comparative studies of event log pattern mining
algorithms include the works by El-Masri et al. [15] and
Landauer et al. [16]. However, these studies were limited to
comparing and discussing the features of event log mining
algorithms, and they did not describe any experiments for
evaluating the algorithms on event log data sets.



III. PERFORMANCE EVALUATION

A. Evaluation Setup

As discussed in section II, although the paper by Zhu et al.
[13] offers interesting insights into event log pattern mining
algorithms, some of its results have been challenged in recent
works [14], [19]. When studying the experiments described
in [13], we identified another subtle issue. Namely, before
measuring the performance of log mining algorithms, the event
logs were modified by applying a number of preprocessing
rules. For some specific scenarios event log preprocessing can
be both beneficial and straightforward – for example, syslog
messages commonly begin with timestamps which makes them
easy to identify and discard, provided that timestamps are not
needed during the message pattern mining process. However,
the preprocessing rules applied in [13] were more complex
and largely targeted free-form event message texts that do not
have any structure.

Unfortunately, writing such preprocessing rules assumes the
previous domain knowledge about event message texts that the
users often do not have, especially when log files are large and
contain many different types of messages. In fact, the very
purpose of event log mining algorithms is to discover such
previously unknown knowledge. For example, before seeing
the pattern Port * link down, the user might not be aware that
some events in the event log originate from network switches
and contain port identifiers (see Fig. 1).

More importantly, such preprocessing rules might over-
simplify the pattern detection task for evaluated algorithms.
For example, if the user has the previous domain knowledge
about messages from Fig. 1 and uses a preprocessing rule
for replacing all port identifiers with the string tag PORTID,
the link down messages from Fig. 1 will no longer have any
variable words and are summarized by the following pattern:
Port PORTID link down. However, since the identification of
variable words is essential for the pattern detection, such pre-
processing can hide more complex pattern detection scenarios
from evaluated algorithms, providing an unrealistic view about
their real-life performance during comparative testing.

Another drawback of the experiments from [13] is the
lack of memory consumption measurements for evaluated
algorithms. However, excessive memory consumption might
prevent the use of an event log pattern mining algorithm on a
regular hardware that is available to a human analyst [19].

For the reasons above, performance evaluation experiments
described in this paper have been conducted according to sev-
eral key principles. First, in order to avoid badly chosen input
settings for evaluated algorithms, we contacted the authors of
the algorithms and followed their recommendations on proper
settings. Second, we did not apply any kind of preprocessing
to event log messages (such as replacing IP addresses with
wildcards * in message texts). Finally, our experiments also
included memory consumption measurements for evaluated
algorithms.

We selected the following seven algorithms for a detailed
evaluation – Drain, IPLoM, AEL, LenMa, Spell, LogCluster

and LogSig. Drain, IPLoM, AEL, LenMa and Spell were
selected as the algorithms with the highest accuracy according
to both Zhu et al. [13] and Copstein et al. [14]. Also, we
selected LogCluster and LogSig, because the results reported
for them have been questioned in recent works [14], [19].

During the experiments, we used the original implemen-
tations of LogCluster, Drain and LenMa [20]–[22]. Unfor-
tunately, other algorithms did not have publicly available
implementations by their authors, and therefore we used the
implementations by Zhu et al. from LogPAI repository [17].
When contacting the authors of evaluated algorithms, we
received responses from the authors of IPLoM, LenMa, Drain,
AEL and LogCluster, while the authors of Spell and LogSig
did not reply to our emails.

For evaluating the algorithms, we used syslog log data
collected from 149 Linux servers and network devices in
Tallinn University of Technology, and log data collected from
75 Linux and Windows servers during Crossed Swords 2019
and 2020 (XS19 and XS20) cyber security exercises in NATO
CCDCOE. Most of the data sets used in this study were
security specific, and apart from the work by Copstein et
al. [14], previous comparative studies have not focused on
security event logs. Also, since several data sets were collected
during cyber security exercises when systems were under
stress, it allowed us to assess the performance of the algorithms
on log data with many unexpected messages. All experiments
were conducted on a physical server with two Intel Xeon E5-
2630Lv2 CPUs (12 cores in total), 64GB of memory, and
Samsung 860 EVO SSD drive with 250GB of size. The server
was running Rocky Linux 8 as an operating system.

B. Quality of Detected Message Patterns
For evaluating the quality of message patterns detected by

different algorithms, we used four data sets of unstructured
syslog messages described in Table I. The sudo and su data
sets represented small event logs with authentication messages
from sudo and su tools on Linux. The sshd and suricata
data sets had over 400,000 events and represented event
logs with medium size. The sshd data set contained Linux
SSH daemon messages, while the suricata data set contained
Suricata IDS alert messages generated by a network IDS on
an organizational outer network perimeter.

TABLE I
DATA SETS FOR EVALUATING THE PATTERN DETECTION RATE

Data set # of events # of message patterns
sudo 815 5
su 1,496 12

sshd 420,104 34
suricata 499,805 1

For each data set from Table I, message patterns were first
identified by the human expert (see the last column in Table I).
Note that in the case of the suricata data set only one pattern
was identified, since all IDS alerts had the same format.

Also, the sshd data set was especially challenging for
the event log pattern mining algorithms, because manually



identified patterns had very different occurrence times – 10
patterns were very frequent and appeared at least 1,000
times in the data set, while 15 patterns were infrequent and
appeared less than 20 times. Therefore, when consulting the
authors of log mining algorithms, we also asked for specific
recommendations on the detection of infrequent event patterns.
For example, the author of IPLoM advised to set the file and
partition support thresholds to 0.

As another example, for AEL and LogCluster the usage
of iterative mining was suggested – the algorithms should be
first executed with parameters that facilitate the detection of
frequent patterns, assigning events not matching these patterns
to the cluster of outliers. The cluster of outliers should then
serve as an input for the next mining step in order to detect
less frequent patterns. This technique is well-known and is not
only illustrated in research papers for LogCluster and other
algorithms [4], [12], but is also supported by industrial event
log pattern mining tools like pdbtool from the widely used
syslog-ng framework [23]. Unfortunately, the AEL implemen-
tation from LogPAI repository did not support the extraction
of outlier events to a separate file, and we were thus not able
to use this technique for AEL.

For assessing the algorithm accuracy, Zhu et al. defined the
accuracy as the ratio of correctly parsed log messages to the
total number of messages, and the message was regarded as
correctly parsed if and only if its event pattern corresponded to
the same group of log messages as the ground truth does [13].
However, this definition focuses on how event log messages
are divided into groups, and does not consider the nature of
the message patterns that are generated for message groups.
For illustrating this issue, consider an example event log of
three messages from Fig. 2.

# an example event log with three messages
Disconnected from 10.11.1.7 port 40387
Disconnected from 10.16.9.4 port 31903
Disconnected from 10.18.5.4 port 10226

# a pattern identified by a human expert
Disconnected from * port *

# a pattern identified by an algorithm

* from * * *

Fig. 2. Example event log and message patterns.

All three messages in the event log correspond to one
message pattern and the algorithm has correctly assigned
all messages to one group, thus yielding the accuracy of 1.
However, the pattern that is generated by the algorithm does
not represent the event log messages properly, and is quite
different from the pattern created by the human expert.

Another issue of the accuracy metric is its ambiguity,
because several event log clustering algorithms can assign a
message to more than one cluster (i.e., clusters are allowed
to overlap) [11], [12]. For example, with the LogCluster
implementation this clustering mode can be activated with the
–aggrsup command line switch. It remains unclear how to
calculate the accuracy in such cases.

For addressing these issues, we used the pattern detection
rate metric for assessing the quality of detected patterns. If
P is the set of patterns identified by the human expert, then
pattern detection rate for algorithm A is defined as |F |/|P |,
where F is the set of all patterns from P identified by A. For
example, if the algorithm A discovers a pattern Disconnected
from 〈*〉 port 〈*〉 for the messages from Fig. 2, where 〈*〉
denotes a wildcard that matches a variable word, the pattern
Disconnected from * port * specified by the human expert has
been correctly identified by A.

For measuring the pattern detection rate, we tested all
algorithms according to author recommendations with many
different settings. Since we were not able to contact the authors
of Spell and LogSig, we had to evaluate these tools without
any specific guidance, trying a wide range of parameter values.
Table II presents the best pattern detection rates observed for
each algorithm (the numbers of detected patterns are provided
in parentheses).

TABLE II
PATTERN DETECTION RATE OF EVALUATED ALGORITHMS

sudo su sshd suricata
IPLoM 0.8 (4) 0.917 (11) 0.5 (17) 0 (0)
Spell 0.8 (4) 0.917 (11) 0.382 (13) 0 (0)
Drain 0.6 (3) 0.917 (11) 0.706 (24) 0 (0)
AEL 0.8 (4) 0.917 (11) 0.559 (19) 0 (0)

LogSig 0.6 (3) 0.667 (8) 0.353 (12) 0 (0)
LenMa 0.6 (3) 0.833 (10) 0.706 (24) 0 (0)

LogCluster 1 (5) 0.833 (10) 0.794 (27) 1 (1)

According to Table II, all algorithms apart from LogCluster
failed to discover the IDS alert pattern from the suricata data
set. For understanding the reason for this phenomenon, see the
example messages from the suricata data set in Fig. 3.

[1:2101411:13] GPL SNMP public access udp
[Classification: Attempted Information Leak]
[Priority: 2] {UDP} 10.19.17.8:59071 -> 192.168.24.27:161

[1:2025883:3] ET EXPLOIT MVPower DVR Shell UCE
[Classification: Attempted Administrator Privilege Gain]
[Priority: 1] {TCP} 10.35.18.16:39952 -> 192.168.12.15:80

Fig. 3. Example messages from the suricata data set.

As can be seen from Fig. 3, the IDS alert texts and
classification descriptions had different lengths in terms of
words. Consequently, IDS alert messages had different lengths
(e.g., two messages from Fig. 3 contain 16 and 18 words).
As discussed in section II, IPLoM, LenMa, AEL and Drain
assume that messages corresponding to the same pattern must
have the same number of words. Due to this algorithmic
limitation, IDS alert messages were never grouped together,
and deriving a common message pattern for all IDS alerts was
thus not possible. This limitation was also acknowledged by
the authors of several algorithms (we were not able to consult
with the authors of Spell and LogSig to establish why the
pattern was not found). However, scenarios like illustrated by
the suricata data set are quite common for security and system
logs (e.g., see the network switch messages from Fig. 1).



Our second finding was that using algorithms with well
chosen input settings can greatly improve their performance.
For example, Zhu et al. reported a modest average accuracy
of 0.665 for LogCluster [13], but as pointed out in [19], the
input settings of LogCluster were suboptimal. In contrast, as
illustrated by Table II, LogCluster can feature a high pattern
detection rate when used in appropriate way. In particular,
some past studies (e.g., [13], [15]) have mistakenly claimed
that LogCluster is not able to find infrequent patterns from
event logs. However, as already discussed in this section,
iterative mining allows for the detection of both frequent
and infrequent patterns. This is highlighted by results from
Table II – in the case of the sshd data set almost half of the
patterns identified by the human expert were infrequent, and
LogCluster had the best pattern detection rate for this data set.

In [13], Zhu et al. reported Drain to have the best average
accuracy that was about 9 percentage points higher than the
second best result from IPLoM, and 20 percentage points
higher than the result from LogCluster. However, we did not
observe the superiority of Drain over other algorithms – it had
the best pattern detection rate of 0.917 only on the su data
set, but in this particular case three other algorithms (IPLoM,
Spell and AEL) produced the same result. For other data sets,
Drain’s pattern detection rate remained below 0.71 and it was
outperformed by other algorithms.

When leaving aside the suricata data set that four algorithms
were not able to handle due to their design limitations, we
did not identify any particular algorithm that would perform
noticeably better than competitors on all other data sets (sudo,
su and sshd). For example, for the sudo data set IPLoM, Spell,
AEL and LogCluster were four best algorithms, detecting at
least 4 patterns out of 5. For the su data set, all algorithms
except LogSig identified 10–11 patterns out of 12. For the sshd
data set, three best algorithms were LenMa, LogCluster and
Drain with 24–27 detected patterns out of 34. In other words,
every algorithm apart from LogSig achieved a good pattern
detection rate on at least two data sets. However, the modest
performance of LogSig might be explained by the fact that we
did not manage to consult with its authors.

When not considering LogSig, our results illustrate that
with the use of well chosen input settings and proper data
mining techniques, all algorithms can achieve a good pattern
detection rate. Furthermore, there is no “best” algorithm for
message pattern detection, and the choice of the algorithm
should depend on its suitability for the given scenario (e.g.,
algorithms with a builtin outlier detection mechanism might
be more suitable for anomaly detection tasks).

C. Computational Cost

For assessing the computational cost of algorithms, data
sets described in Table III were used. The webserver data set
represented a medium-sized event log and contained HTTP
request events in Apache web server format (events were
collected during the XS20 cyber security exercise). The re-
maining three data sets represented large event logs, with the
windows data set containing about 3.5 million events received

from 21 Windows nodes during the XS20 exercise. The ttu-
syslog data set had about 17 million syslog events from 149
Linux servers and network devices in Tallinn University of
Technology, while the xs19-syslog data set had over 27 million
syslog events received from 54 Linux servers during the XS19
cyber security exercise.

TABLE III
DATA SETS FOR EVALUATING THE COMPUTATIONAL COST

Data set # of events Size
webserver 95,457 21MB
windows 3,551,025 3.2GB
ttu-syslog 17,015,421 2.5GB

xs19-syslog 27,365,365 4.6GB

When evaluating the algorithms on data sets from Table
III, the CPU time and memory consumption of algorithms
were measured, testing each algorithm with a number of input
setting combinations. If the execution of a test took longer than
36 hours (1.5 days), the test was interrupted and regarded as
incomplete.

During the experiments we discovered that IPLoM, AEL,
Spell and LogSig were not able to process the windows, ttu-
syslog and xs19-syslog data sets within 36 hours (LogSig run
out of memory and crashed during all tests). Although LenMa
managed to process the windows data set, consuming 9,806–
12,005 seconds (about 2.7–3.3 hours) of CPU time and about
8GB of memory, it was not able to complete the processing
of ttu-syslog and xs19-syslog data sets within 36 hours. Since
only Drain and LogCluster managed to complete all tests, we
are providing more detailed resource consumption data only
for these two algorithms in the remainder of this section.

When evaluating LogCluster, we employed three relative
support threshold values 1%, 0.5% and 0.1% that are com-
monly used [11], [19]. Relative support threshold is calculated
from the number of events in the event log, for example, if
the event log contains 20,000 events, relative support threshold
0.1% means support threshold 20. Drain was evaluated with
three combinations of values for the st (similarity threshold for
searching log groups) and depth (parse tree depth) parameters:
st=0.4 and depth=4 (default settings for Drain), st=0.3 and
depth=6, st=0.6 and depth=5. These three combinations were
found to produce the best results during the experiments
described in section IIIB.

Unlike the LogCluster implementation, Drain is not a UNIX
tool but rather a library that requires the development of
a custom Python script for event log mining. In the Drain
repository, an example script called drain bigfile demo.py was
provided for the purposes of mining large event logs [24]. This
script loads the entire event log file into memory before the
pattern mining which is apparently done for speeding up the
mining. However, this can noticeably increase the memory
footprint of the algorithm. Therefore, we also evaluated Drain
in memory-efficient mode that involves keeping the event log
on disk only. For assessing the memory saving techniques
of LogCluster, we also evaluated LogCluster with sketching



enabled (creating a sketch involves an additional pass over
the event log and thus requires extra CPU time [11]).

The experiment results have been given in Table IV, with
each cell providing the consumed CPU time and maximum
memory footprint of the algorithm. The CPU time and memory
consumption readings in parentheses represent the case where
the given algorithm was executed in a memory-efficient mode.
Since both algorithms are single-threaded, consumed CPU
time closely reflects the run time of the algorithms.

TABLE IV
RESOURCE CONSUMPTION OF EVALUATED ALGORITHMS

webserver windows ttu-syslog xs19-syslog
Drain: 3s 234s 3,669s 838s
st=0.3, 48MB 3,602MB 3,665MB 6,557MB

depth=6 (3s (235s (3,851s (840s
20MB) 36MB) 22MB) 31MB)

Drain: 3s 430s 20,224s 9,283s
st=0.4, 48MB 3,603MB 3,668MB 6,552MB

depth=4 (3s (416s (20,323s (9,513s
21MB) 36MB) 24MB) 25MB)

Drain: 6s 437s 83,606s 4,953s
st=0.6, 48MB 3,605MB 3,694MB 6,581MB

depth=5 (6s (435s (82,882s (4,907s
21MB) 37MB) 49MB) 55MB)

LogCluster: 4s 739s 667s 953s
rsupport=1% 33MB 844MB 1,911MB 5,571MB

(7s (1,286s (1,330s (1,832s
19MB) 19MB) 32MB) 28MB)

LogCluster: 4s 761s 682s 969s
rsupport=0.5% 33MB 925MB 1,911MB 5,571MB

(8s (1,312s (1,352s (1,864s
21MB) 19MB) 63MB) 33MB)

LogCluster: 4s 758s 699s 993s
rsupport=0.1% 38MB 2,735MB 1,912MB 5,571MB

(8s (1,355s (1,369s (1,873s
33MB) 23MB) 161MB) 74MB)

As Table IV indicates, when algorithms were executed in
memory-efficient mode, the memory footprint of both algo-
rithms decreased dramatically for large event logs. Also, be-
cause event logs were stored on a fast local SSD disk, memory-
efficient mode did not impact the CPU time consumption of
Drain significantly.

Our second observation was that Drain and LogCluster had a
modest CPU time consumption and comparable memory foot-
print for the webserver and windows data sets which contain
about 95 thousand and 3.5 million events respectively. For
example, for the windows data set the CPU time consumption
of the algorithms was 234–761 seconds (about 4–13 minutes;
LogCluster needed somewhat more CPU time because unlike
Drain, it made two passes over the event log).

However, as the number of events in data sets increased,
Drain started to need noticeably more CPU time than LogClus-
ter. The ttu-syslog and xs19-syslog data sets contained about
17 and 27 million events respectively, and for these data sets
we observed a comparable CPU time consumption only during
one experiment for the xs19-syslog data set (see the last cell
of the first data row in Table IV). In other cases for this data
set, Drain needed 4,953 seconds (about 1.4 hours) and 9,283
seconds (about 2.6 hours) of CPU time, while for LogCluster

the CPU time consumption was 953–993 seconds (about 16–
17 minutes). For the ttu-syslog data set, LogCluster required
667–699 seconds (about 11–12 minutes) of CPU time, while
Drain needed 3,669 seconds (about 1 hour), 20,224 seconds
(about 5.6 hours), and 83,606 seconds (about 23.2 hours).

Also, Drain was much more sensitive to different input
settings – for example, for the ttu-syslog data set the CPU
time consumption ranged from 1 hour to almost 1 day. On
the other hand, the largest CPU time difference observed for
LogCluster was less than 1 minute for all data sets. The CPU
time consumption of LogCluster remained modest for much
lower support thresholds than 0.1% – when we tested a very
low relative support threshold 0.001%, LogCluster required
865–1,166 seconds (about 14–19 minutes) of CPU time for
processing the windows, ttu-syslog and xs19-syslog data sets.

According to our observations, performance of Drain was
negatively impacted not only by the number of events in
the event log, but also by heterogeneity of log data. While
webserver and windows data sets featured a moderate number
of event types, ttu-syslog and xs19-syslog data sets contained
many events of different kind with a wide variety of message
texts. For these data sets, Drain discovered thousands of
patterns during the event log mining process, with a large
fraction of these patterns being redundant (e.g., many too
specific patterns that should have been detected as one pattern).
Although Drain arranges detected patterns into a parse tree for
reducing its computational cost, for larger heterogenous data
sets the parse tree is apparently not always efficient, leading
to a high CPU time consumption.

As discussed previously in this section, AEL, IPLoM,
LenMa, Spell and LogSig did not scale to large event logs.
Contrary to our results, Zhu et al. [13] reported IPLoM and
AEL to have a good performance on three 1GB event logs
that were generated from the following data sets available in
LogHub repository [18] – HDFS (1.47GB), BGL (709MB)
and Android (3.38GB, with 184MB of data being publicly
available). According to Zhu et al., 1GB event logs were
generated by truncating the data sets to 1GB [13]. However,
since BGL and Android data sets were smaller than 1GB, we
were able to repeat this process only for the HDFS data set.

Because we hypothesized that the performance results from
[13] might be a consequence of event log preprocessing, we
repeated the experiments for the unmodified event logs. Since
for the BGL and Android data set we were not able to generate
the 1GB event logs, we used the original 709MB (BGL) and
184MB (Android) data sets instead. When we executed the
algorithms with the same settings as documented in LogPAI
repository, we found that IPLoM was not able to process the
Android data set and crashed (we experienced the same result
after using a number of different settings for IPLoM).

As for AEL, in [13] the run times of 20–30 minutes were
reported for HDFS and Android data sets, while for BGL the
run time was about 200 minutes. In contrast, for the Android
data set we observed the run time of 4 hours and 10 minutes,
although we used a much smaller data set (184MB vs 1GB).
For the BGL data set (about 30% smaller than the data set



used by Zhu et al.), we observed the run time of 2 days, 10
hours and 48 minutes. Finally, for the HDFS data set the run
time was 5 days, 12 hours and 2 minutes.

Note that the implementations of evaluated algorithms were
single-threaded and we tested them on a physical server
with the same OS type (Linux), CPU type (Intel Xeon), and
the same amount of memory (64GB) as reported in [13].
Therefore, aforementioned significant run time gaps can not be
explained solely by hardware differences. They also reflect the
fact that preprocessing of event log data can have a profound
effect on the algorithm performance, providing an unrealistic
view about the actual performance on the original event log.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have conducted a comparative study of
event log pattern mining algorithms, evaluating the pattern
detection rate and resource consumption of seven algorithms.
Our main findings are summarized below.

First, we found that several commonly used algorithms
(Drain, IPLoM, AEL and LenMa) share the same design
limitation which prevents the detection of event patterns for
messages with different number of words. As discussed in this
work, such event patterns are commonly found in security and
system logs.

Second, for proper evaluation of event log mining algo-
rithms, a good understanding of their input settings and usage
techniques is required. The algorithms evaluated in this work
featured good pattern detection rates when used with settings
recommended by their authors. Also, we did not find any
particular algorithm being superior to others in terms of pattern
detection rate.

Third, the evaluation of event log mining algorithms should
not be conducted on preprocessed event log data sets. As
shown in this work, such preprocessing can significantly
influence the performance of the algorithms, providing an
overly optimistic picture about the algorithm performance on
real-life event logs.

Finally, we found that only Drain and LogCluster scaled to
larger event logs. However, Drain was not well suited for pro-
cessing large event logs with a high degree of heterogeneity.
Also, Drain was highly sensitive to input settings, with its CPU
time consumption fluctuating from 1 hour to almost 1 day in
the case of one data set. In contrast, LogCluster was much less
sensitive to changes in input settings, featuring modest CPU
time consumption for all scenarios.

One open issue in the field of event log pattern mining is the
lack of publicly available recent data sets from commonly used
applications and operating systems. For example, in Loghub
repository [18] several data sets are more than 15 years old
(e.g., the BGL data set discussed in section IIIC). In particular,
many organizations are not willing to publish their security
event logs due to their sensitive nature. As for future work,
we plan to contribute to a recent initiative by NATO CCDCOE
that involves publishing the data sets collected during cyber
security exercises [25].
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