

Efficient Event Log Mining with LogClusterC

Chen Zhuge and Risto Vaarandi

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

This paper has been accepted for publication at the 2017 IEEE International Conference on Big Data Security on Cloud, and

the final version of the paper is included in Proceedings of the 2017 IEEE International Conference on Big Data Security on

Cloud (DOI: 10.1109/BigDataSecurity.2017.26)

Efficient Event Log Mining with LogClusterC

Chen Zhuge and Risto Vaarandi

TUT Centre for Digital Forensics and Cyber Security

Tallinn University of Technology

Tallinn, Estonia

zhugeh@yahoo.com, risto.vaarandi@ttu.ee

Abstract—Nowadays, many organizations collect large volumes

of event log data on a daily basis, and the analysis of collected

data is a challenging task. For this purpose, data mining

methods have been suggested in past research papers, and

several data clustering algorithms have been developed for

mining line patterns from event logs. In this paper, we

introduce an open-source tool called LogClusterC which

implements the LogCluster algorithm for discovering line

patterns and outliers from event logs. According to our

performance measurements, LogClusterC compares favorably

to other publicly available log clustering tools.

Keywords–event log clustering; mining line patterns from

event logs; LogCluster algorithm; data clustering; data mining

I. INTRODUCTION

In modern data centers, significant amounts of event log
data are generated on a daily basis [1]. Since the manual
review and analysis of larger events logs are infeasible, data
mining methods have been often suggested for this purpose
[2-10], with data clustering algorithms being one of the most
commonly proposed approaches [2, 3, 5-8]. Because event
logs are often textual and each event is described by a single
event log line, previously suggested data clustering
algorithms have been designed for mining line patterns from
such logs. Detected line patterns (e.g., sshd: Failed password
for * from * port * ssh2) provide valuable insights into
commonly occurring event types and can be used for various
purposes, e.g., the development of log monitoring and event
correlation rules. Since data clustering algorithms also allow
for the identification of outlier data points, they are useful for
highlighting unusual events.

In our recent paper, we have proposed the LogCluster
data clustering algorithm and its Perl-based prototype
implementation for mining line patterns and outliers from
event logs [2]. Unfortunately, we were only able to conduct
preliminary experiments for assessing the performance of the
LogCluster algorithm, while the development of an efficient
C-based implementation and more detailed experiments were
identified as future work [2]. The current paper closes this
research gap and introduces LogClusterC which is an open-
source C-based implementation of the LogCluster algorithm.
The remainder of the paper is organized as follows – section
II discusses related work, section III introduces LogClusterC,
section IV describes our experiments for evaluating its
performance, and section V outlines future work.

II. RELATED WORK

The earliest event log clustering algorithm is SLCT that
was developed in 2003 [3]. SLCT takes support threshold s
for its input parameter and mines clusters that contain s or
more lines. All lines in the same cluster match a common
line pattern, and a cluster is identified by a set of words with
their offsets. For example, if the cluster is identified by
words (Connection, 1), (to, 2), and (broken, 4), lines in this
cluster correspond to the line pattern Connection to * broken.
SLCT reports all detected clusters as line patterns to the end
user. In recent research papers, several shortcomings of
SLCT have been pointed out – it does not detect wildcard
tails for line patterns, it is sensitive to shifts in word positions
and delimiter noise, and lower support thresholds can lead to
overfitting.

In order to address these issues, Reidemeister has
suggested the clustering of line patterns from SLCT with a
single-linkage clustering algorithm that uses a Levenshtein
distance function, and deriving a common line pattern for
each cluster [5]. IPLoM by Makanju is a hierarchical
clustering algorithm that splits the event log iteratively [6].
The first step involves creating partitions for event log lines
with the same number of words. During the second step, a
word position with the smallest number of unique words is
identified in each partition, and each partition is split by the
word appearing in this position. The third step involves
further partitioning based on associations between word
pairs. After these steps, IPLoM derives a common line
pattern for each partition.

Another event log clustering algorithm is HLAer by Ning
et al. [7] which uses the OPTICS clustering method [11].
According to the authors, HLAer outperforms SLCT and
IPLoM on several event logs. In their recent work, Kimura et
al. [8] have suggested a line pattern mining algorithm for
event logs which is based on word scoring and employs the
DBSCAN clustering technique [12]. A leading event log
management platform Splunk [13] implements a clustering
algorithm for events in the Splunk database. The algorithm
uses vector-based distance function for calculating similarity
between two events, but unlike other methods discussed in
this section, a common line pattern is not derived for events
in the same cluster.

Shortcomings of SLCT have also motivated the
development of the LogCluster algorithm which is designed
to find more meaningful patterns than SLCT [2]. LogCluster

takes the support threshold s for its input parameter, and
detects frequent words (words that appear in s or more lines)
and cluster candidates during separate data passes, selecting
candidates with at least s lines as clusters. Unlike SLCT,
LogCluster does not consider words with positional
information.

For assigning an event log line to a cluster candidate, all
frequent words from the line are arranged into a sequence in
the order of appearance, and the line is assigned to the
candidate which is identified by this sequence of frequent
words. Also, each cluster candidate contains information
about the position of infrequent words for all lines that have
been assigned to this candidate. For example, if the words
User, logout, and for are frequent, event log lines User
logout for bob and User logout for john doe are assigned to
the cluster candidate User logout for *{1,2}. This candidate
is identified by the sequence (User, logout, for), and the
wildcard *{1,2} matches one or two words. In addition, the
LogCluster algorithm supports overfitting mitigation
heuristics, uses word classes for detecting infrequent words
with the same format, supports several advanced input
preprocessing features, and employs sketches for reducing its
memory footprint.

During our recent research, we created a publicly
available Perl-based implementation of LogCluster [2], and
for comparing its performance to SLCT in a fair way, we
implemented SLCT in Perl. Our experiments indicated that
despite several similarities between two algorithms, SLCT
was 1.28-1.62 times faster than LogCluster [2]. However, we
were unable to establish whether this performance gap is
related to the use of Perl or is a genuine weakness of the
LogCluster algorithm. The following sections describe our
work that answers this research question.

III. OVERVIEW OF LOGCLUSTERC

LogClusterC is an open-source C-based implementation
of the LogCluster algorithm that is publicly available [14]
under the terms of GNU GPLv2. Similarly to the Perl-based
implementation of the LogCluster algorithm (it is called
LogClusterP in the rest of the paper), LogClusterC is a
UNIX tool which is executed from command line and
configured with command line options. Apart from some
experimental features and Perl-specific command line
options of LogClusterP, LogClusterC is compatible with
LogClusterP.

Since the LogCluster algorithm has several design
similarities to SLCT (such as frequent word based candidate
generation), LogClusterC borrows some source code and
data structures from SLCT like sketches, fast Shift-Add-Xor
string hashing functions [15], and move-to-front hash tables
[16]. Nevertheless, since LogCluster has a more complex
cluster candidate generation procedure and has several
features for addressing the shortcomings of SLCT (such as
heuristics for mitigating overfitting), the code base of
LogClusterC is significantly larger.

logclusterc --support=30 --input=suricata.log \

--lfilter='suricata\[[0-9]+\]: (.+)' --template='$1' \

--wweight=0.5 --outliers=outliers.log

detected clusters (reported as line patterns)

ET CINS Active Threat Intelligence Poor Reputation IP

group *{1,1} [Classification: Misc Attack] [Priority: 2]

{TCP} *{1,1} -> *{1,1}

Support : 999

GPL SNMP public access udp [Classification:

Attempted Information Leak] [Priority: 2] {UDP}

(10.24.253.130:39734|10.131.49.54:8013|10.48.31.19:8013)

-> *{1,1}

Support : 144

ET DOS Possible NTP DDoS Inbound Frequent Un-Authed

MON_LIST Requests IMPL 0x03 [Classification: Attempted

Denial of Service] [Priority: 2] {UDP} *{1,1} -> *{1,1}

Support : 132

GPL DNS named version attempt [Classification: Attempted

Information Leak] [Priority: 2] {UDP} *{1,1} -> *{1,1}

Support : 75

ET COMPROMISED Known Compromised or Hostile Host Traffic

group *{1,1} [Classification: Misc Attack] [Priority: 2]

{TCP} *{1,1} -> *{1,1}

Support : 50

ETPRO EXPLOIT Possible Asus WRT LAN Backdoor Command

Execution [Classification: Attempted Administrator

Privilege Gain] [Priority: 1] {UDP} *{1,1} -> *{1,1}

Support : 34

ETPRO DOS Possible RPC Portmapper Scanning

[Classification: Attempted Denial of Service]

[Priority: 2] {UDP} *{1,1} -> *{1,1}

Support : 34

sample outlier events from outliers.log

Jun 21 03:53:39 mysensor suricata[30655]: [1:2019137:2]

ET WEB_SPECIFIC_APPS Possible WP CuckooTap Arbitrary File

Download [Classification: Web Application Attack]

[Priority: 1] {TCP} 10.65.9.18:59353 -> 192.168.14.10:80

Jun 21 03:54:00 mysensor suricata[30655]: [1:2020221:4]

ET WEB_SPECIFIC_APPS WP Generic revslider Arbitrary File

Download [Classification: Web Application Attack]

[Priority: 1] {TCP} 10.65.9.18:34488 -> 192.168.14.10:80

Jun 21 03:54:07 mysensor suricata[30655]: [1:2016078:2]

ET WEB_SPECIFIC_APPS Amateur Photographer Image Gallery

file parameter Local File Inclusion Attempt

[Classification: Web Application Attack] [Priority: 1]

{TCP} 10.65.9.18:45538 -> 192.168.14.10:80

Jun 21 03:54:44 mysensor suricata[30655]: [1:2015494:2]

ET WEB_SPECIFIC_APPS Wordpress Plugin PICA Photo Gallery

imgname parameter Local File Inclusion Attempt

[Classification: Web Application Attack] [Priority: 1]

{TCP} 10.65.9.18:46615 -> 192.168.14.10:80

Jun 21 03:54:50 mysensor suricata[30655]: [1:2015499:2]

ET WEB_SPECIFIC_APPS Wordpress Plugin Newsletter data

parameter Local File Inclusion vulnerability

[Classification: Web Application Attack] [Priority: 1]

{TCP} 10.65.9.18:55170 -> 192.168.14.10:80

Jun 21 03:54:56 mysensor suricata[30655]: [1:2014948:4]

ET WEB_SPECIFIC_APPS WordPress Simple Download Button

Shortcode Plugin Arbitrary File Disclosure Vulnerability

[Classification: Web Application Attack] [Priority: 1]

{TCP} 10.65.9.18:35783 -> 192.168.14.10:80

Jun 21 03:55:01 mysensor suricata[30655]: [1:2014899:6]

ET WEB_SPECIFIC_APPS Wordpress Plugin Tinymce Thumbnail

Gallery href parameter Remote File Disclosure Attempt

[Classification: Web Application Attack] [Priority: 1]

{TCP} 10.65.9.18:44546 -> 192.168.14.10:80

Figure 1. Example use of LogClusterC for mining an IDS alarm log (for

the sake of privacy, all sensitive fields like IP addresses are anonymized).

logclusterc --support=100 --input=switch.log \

--lfilter=' (%[^[:space:]]+: .+)' --template='$1'

detected clusters (reported as line patterns)

%LINEPROTO-5-UPDOWN: Line protocol on Interface *{1,1}

changed state to up

Support : 1,494

%LINEPROTO-5-UPDOWN: Line protocol on Interface *{1,1}

changed state to down

Support : 1,408

%LINK-3-UPDOWN: Interface *{1,1} changed state to up

Support : 1,261

%LINK-3-UPDOWN: Interface *{1,1} changed state to down

Support : 1,174

%DOT1X-5-SUCCESS: Authentication successful for client

*{1,1} on Interface *{1,1} AuditSessionID *{1,1}

Support : 717

%ETHPORT-5-IF_TX_FLOW_CONTROL: Interface *{1,1} operational

Transmit Flow Control state changed to on

Support : 128

%ETHPORT-5-IF_DUPLEX: Interface *{1,1} operational duplex

mode changed to Full

Support : 128

%ETHPORT-5-IF_RX_FLOW_CONTROL: Interface *{1,1} operational

Receive Flow Control state changed to on

Support : 122

SEC rule for detecting conditions where a switch interface

has been down for longer than 10 seconds, and alerting the

network administrator via e-mail

type=PairWithWindow

ptype=RegExp

pattern=^[[:alpha:]]{3} [\d]\d \d\d:\d\d:\d\d ([\w.-]+) \

.*: %LINK-3-UPDOWN: Interface ([\w\/]+), changed state to down

desc=Interface $2 on switch $1 has been down for 10 seconds

action=pipe '%s' mail -s 'Interface failure' root@example.com

ptype2=RegExp

pattern2=^[[:alpha:]]{3} [\d]\d \d\d:\d\d:\d\d $1 \

.*: %LINK-3-UPDOWN: Interface $2, changed state to up

desc2=Interface %2 on switch %1 has come up within 10 seconds

action2=logonly

window=10

Figure 2. Example use of LogClusterC for discovering common event

types from Cisco network switch logs, and a SEC event correlation rule

example which has been derived from detected patterns.

Unlike SLCT, LogClusterC stores cluster candidates into

prefix tree if the algorithm is executed with the support
aggregation heuristic, in order to reduce the computational
cost of the heuristic (in contrast, SLCT uses less efficient
move-to-front hash table). Other differences with SLCT code
base include support for the unique features of the
LogCluster algorithm such as word classes and word weight
functions. Finally, LogClusterC also provides several
command line options for advanced output formatting and
debugging which are not supported by SLCT.

Fig. 1 displays an example application of LogClusterC
for the Suricata IDS alarm log. In this example, support
threshold was set to 30 with the --support option, while
the --lfilter and --template options were employed for
removing the syslog timestamp, IDS sensor name, and syslog
tag from each IDS alarm. With the --wweight option, cluster
joining heuristic was enabled that is based on the concept of
a word weight (see [2] for more details). The second line
pattern in Fig. 1 represents a joint cluster created by this

heuristic, and corresponds to SNMP probing alarms for UDP
peers 10.24.253.130:39734, 10.131.49.54:8013, and
10.48.31.19:8013. LogClusterC was also configured to
detect outlier events with the --outliers option, and Fig. 1
displays some example outliers which correspond to a
sophisticated attack from host 10.65.9.18. The attack was
conducted against an institutional web server and triggered a
number of unusual IDS alarms. As Fig. 1 illustrates,
LogClusterC can help the security analyst to quickly identify
common (often botnet-related) attack and network probing
patterns, and also discover rare and more elaborate
individual attacks.

The use of LogClusterC is not limited to security logs
and the analysis of security incidents, but it can be applied to
any event log type for various other purposes. Fig. 2 depicts
a LogClusterC usage example for finding frequent event
types from Cisco network switch logs, in order to employ
detected knowledge for building event correlation rules for
network fault management. In this example, the --lfilter
and --template options were used for dropping the prefix
from each log message which consists of timestamp and
network switch name, focusing on message text during the
mining process. Each detected line pattern represents a
common event type and can be easily converted into a
regular expression or other format that is supported by a
dedicated event correlation tool. For example, Fig. 2 presents
a SEC (Simple Event Correlator) [17] rule which uses
regular expressions derived from the third and fourth line
pattern detected by LogClusterC (the event correlation rule
alerts the network administrator if an interface goes down on
a switch and does not come up within 10 seconds).

The following section will discuss experiments for
evaluating the performance of LogClusterC that were
conducted on supercomputer logs.

IV. PERFORMANCE OF LOGCLUSTERC

In order to evaluate the performance of LogClusterC and
compare it to other log clustering algorithms, we selected
seven publicly available log files from the USENIX
Computer Failure Data Repository [18] that are described in
Table I. All experiments were conducted on a notebook
running Ubuntu 16.04 Linux with Intel Core i5-3230M
2.6GHz processor, 8GB of memory, and 180GB SSD disk.

TABLE I. LOG FILES USED DURING EXPERIMENTS

Log file Description Size

(MB)

Size (# of

lines)

Cray_A Cray XT logs, data set 6 20.86 379,457

Cray_B Cray XT logs, data set 4 52.12 958,075

Cray_C Cray XT logs, data set 1 172.72 3,170,514

BGL HPC4 BlueGene/L

supercomputing system logs

708.76 4,747,963

LBR HPC4 Liberty supercomputing

system logs

30,235.34 265,569,231

TDB HPC4 Thunderbird

supercomputing system logs

30,386.44 211,212,192

SPT HPC4 Spirit supercomputing

system logs

38,236.88 272,298,969

TABLE II. PERFORMANCE COMPARISON FOR LOGCLUSTERC (LCC), SLCT, AND LOGCLUSTERP (LCP)

Row

Log file Support

threshold

LCC

runtime

in

seconds

SLCT

runtime

in

seconds

LCP

runtime in

seconds

LCC

memory

usage in

kilobytes

SLCT

memory

usage in

kilobytes

LCP

memory

usage in

kilobytes

of clusters

(candidates)

detected by

LCC/LCP

of clusters

(candidates)

detected by

SLCT

1 Cray_A 1,897 1.25 1.30 10.83 27,432 26,792 226,068 0

(63,876)

0

(53,615)

2 Cray_A 379 1.28 1.33 11.31 34,012 37,064 281,332 27

(81,044)

29

(79,280)

3 Cray_A 200 1.35 1.41 12.37 63,396 65,664 543,768 13

(151,707)

16

(150,299)

4 Cray_B 4,790 2.82 2.91 26.14 8,816 5,384 29,304 32

(5,700)

32

(910)

5 Cray_B 958 3.38 3.06 32.08 162,512 13,504 1,451,208 10

(382,322)

10

(15,667)

6 Cray_B 200 3.31 3.47 33.79 193,156 180,676 1,684,240 323

(465,187)

323

(412,317)

7 Cray_C 15,852 9.25 9.48 86.09 9,900 8,028 39,164 26

(8,622)

26

(1,011)

8 Cray_C 3,170 10.79 10.85 104.12 437,320 371,532 3,953,568 44

(1,046,947)

44

(836,461)

9 Cray_C 200 11.07 11.84 112.18 612,836 636,884 5,499,112 2,044

(1,501,118)

2,045

(1,500,167)

10 BGL 23,739 47.21 48.12 200.03 518,932 527,668 1,153,120 55

(4,160)

58

(1,890)

11 BGL 4,747 46.68 50.42 207.14 517,404 527,720 1,153,796 162

(34,844)

162

(17,213)

12 BGL 200 48.13 51.77 224.26 517,488 527,720 3,026,716 813

(543,035)

814

(538,370)

13 LBR 1,327,846 1,492.73 1,577.71 11,046.43 1,176,496 1,211,888 2,788,732 36

(93,010)

36

(54,573)

14 LBR 265,569 1,498.97 1,568.70 11,156.85 1,178,340 1,212,008 2,789,600 274

(165,197)

274

(111,536)

15 LBR 200 2,767.77 2,975.33 23,221.76 2,024,736 2,020,552 6,933,324 5,738
(7,406 /

7,505)

5,738
(7,386)

16 TDB 1,056,060 1,618.85 1,669.96 9,252.64 1,927,992 1,975,816 4,555,400 6

(197,847)

9

(85,862)

17 TDB 211,212 1,643.49 1,665.39 9,774.04 1,928,104 1,977,588 5,751,584 22

(1,126,218)

28

(913,546)

18 TDB 200 2,770.25 2,942.97 19,945.70 2,341,996 2,350,680 7,135,324 1,683

(3,292 /
3,272)

1,728

(3,314)

19 SPT 1,361,494 1,792.52 1,884.23 13,740.50 1,045,092 1,055,016 2,503,904 39

(110,722)

39

(50,506)

20 SPT 272,298 1,816.48 1,906.76 13,955.47 1,043,228 1,054,824 2,507,108 122
(407,835)

123
(325,568)

21 SPT 200 3,657.80 3,849.74 31,970.67 2,090,548 2,076,108 7,620,424 164,776

(237,505 /
237,420)

164,776

(237,083)

From clustering methods discussed in section II, we were

unable to test IPLoM, HLAer, and algorithms by
Reidemeister and Kimura et al., since their implementations
are not publicly available. Therefore, C-based
implementation of SLCT (version 0.05) [19] and
LogClusterC (version 0.05) were evaluated. Both SLCT and
LogClusterC were compiled with gcc, using the –O2 option
(optimize for speed). We also included LogClusterP (version
0.08) in all tests, in order to compare its performance with
LogClusterC.

The experiment results are provided in Table II. When
clustering each log file from Table I, we measured the
runtime, CPU time and memory consumption, and the
number of detected clusters and cluster candidates. Since
consumed CPU times were closely matching runtimes, we
have omitted CPU times from Table II. In the table, LCC and
LCP denote LogClusterC and LogClusterP respectively.
Also, two rightmost columns present the number of detected
clusters, with the number of cluster candidates given in
parentheses.

When evaluating LogClusterC, SLCT, and LogClusterP,
we clustered each log file from Table I with relative support
thresholds 0.5% and 0.1% (i.e., setting the support threshold
to 0.5% and 0.1% of the number of event log lines). We also
clustered log files with the support threshold of 200 that
corresponds to relative thresholds 0.05271-0.00007% for log
files in Table I. The employment of such a low threshold
allowed for imposing heavier workloads on tested
algorithms, since it leads to the generation of a larger number
of frequent words and cluster candidates. When executing all
implementations with this input parameter setting, the
clustering of LBR, TDB, and SPT log files required
significant amounts of memory, and implementations run out
of RAM in several cases. For this reason, we enabled sketch
based memory optimization techniques for LogClusterC,
SLCT, and LogClusterP when LBR, TDB, and SPT log files
were mined with support threshold 200 (experiments
described by rows 15, 18, and 21 in Table II). Although
implementations use the sketches in the same manner for
filtering out cluster candidates with insufficient support
[2, 3], the number of remaining candidates may easily differ
for LogClusterC and LogClusterP as data from rows 15, 18,
and 21 also illustrate.

Table II reveals several interesting phenomena that we
observed when clustering log files from Table I. Firstly, we
expected LogClusterC to consume more memory than
SLCT, since during the experiments LogClusterC detected
on average 3.05 times more candidates than SLCT. Also, the
LogCluster algorithm has a more complex candidate
generation procedure and requires more bytes for storing a
candidate than SLCT. However, apart from the experiment
depicted by row 5, the memory footprint of LogClusterC
remained comparable to SLCT and was even slightly smaller
in a number of cases. As the main reason, our investigation
revealed the smaller memory consumption of LogClusterC
during frequent word detection. Unlike SLCT, the
LogCluster algorithm does not need to maintain several
occurrence counters for the same word that appears in
different positions. For example, during our experiments
LogClusterC created on average 15.36% less counters which
outweighed its larger memory footprint during candidate
generation. The only exception is the experiment in row 5,
where LogClusterC detected 24.40 times more candidates
and therefore required 12.03 times more memory than
SLCT.

Table II also indicates that apart from the experiment in
row 5, LogClusterC was slightly faster than SLCT, requiring
on average 3.65% less runtime. These results were
unexpected, since the candidate generation procedure is more
expensive for the LogCluster algorithm, and it detected more
candidates during the experiments. When investigating this
phenomenon, we found that SLCT needs to spend additional
CPU time for encoding word position information into
words. Also, word position information adds four bytes to
internal representation of each word, creating additional
work for the word hashing function. Although word position
encoding and word hashing are implemented with fast
bitwise and integer operations in SLCT implementation, the
extra work will nevertheless have to be spent on every word

during all data passes. On larger data sets, this effort can
easily consume more CPU time than the more complex
candidate generation procedure of the LogCluster algorithm.
When we created an experimental SLCT version with word
position encoding disabled, it outperformed LogClusterC in
terms of runtime.

The experiment results and their analysis indicates that
C-based implementations of LogCluster and SLCT
algorithms have comparable runtime and memory usage, and
the LogCluster algorithm does not have significant
performance weaknesses when compared to SLCT.
However, as discussed in [2], LogCluster is able to discover
more refined and meaningful line patterns which is a clear
advantage over SLCT.

Finally, according to Table II, LogClusterC was on
average 7.82 times faster and consumed on average 4.92
times less memory than LogClusterP. We also compared the
performance of LogClusterC and LogClusterP for log files
from Table I with overfitting mitigation heuristics enabled,
and found that the performance gap between two
implementations widened further. Therefore, LogClusterC
offers significant performance benefits over LogClusterP,
especially when larger log files need to be mined in a fast
and memory-efficient way.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the LogClusterC event
log mining tool and described a number of experiments for
evaluating its performance against other publicly available
log clustering tools. The experiments have revealed that
LogClusterC compares favorably to other algorithms and
tools, and is able to efficiently mine large event logs.

As for the future work, we plan to investigate
opportunities to modify the LogCluster algorithm for stream
mining scenarios. Another promising research direction is
the visualization of clusters detected by LogClusterC. We
also plan to study methods for automatic selection of the
support threshold input parameter. Finally, our future
research includes the use of the LogCluster algorithm in
distributed computing environments.

ACKNOWLEDGMENT

The authors are grateful to Mr. Kaido Raiend, Mr. Ain
Rasva, Dr. Rain Ottis and Prof. Olaf Maennel for supporting
this research. This work was also supported by Estonian IT
Academy (StudyITin.ee) and SEB Estonia.

REFERENCES

[1] Risto Vaarandi and Mauno Pihelgas, “Using Security Logs for
Collecting and Reporting Technical Security Metrics,” in
Proceedings of the 2014 IEEE Military Communications Conference,
pp. 294-299.

[2] Risto Vaarandi and Mauno Pihelgas, “LogCluster – A Data
Clustering and Pattern Mining Algorithm for Event Logs,” in
Proceedings of the 2015 International Conference on Network and
Service Management, pp. 1-7.

[3] Risto Vaarandi, “A Data Clustering Algorithm for Mining Patterns
From Event Logs,” in Proceedings of the 2003 IEEE Workshop on IP
Operations and Management, pp. 119-126.

[4] Kenji Yamanishi and Yuko Maruyama, “Dynamic Syslog Mining for
Network Failure Monitoring,” in Proceedings of the 2005
International Conference on Knowledge Discovery and Data Mining,
pp. 499-508.

[5] Thomas Reidemeister, “Fault Diagnosis in Enterprise Software
Systems Using Discrete Monitoring Data,” PhD Thesis, University of
Waterloo, 2012.

[6] Adetokunbo Makanju, “Exploring Event Log Analysis With
Minimum Apriori Information,” PhD Thesis, University of
Dalhousie, 2012.

[7] Xia Ning, Geoff Jiang, Haifeng Chen and Kenji Yoshihira, “HLAer: a
System for Heterogeneous Log Analysis,” in Proceedings of the 2014
SDM Workshop on Heterogeneous Learning.

[8] Tatsuaki Kimura, Keisuke Ishibashi, Tatsuya Mori, Hiroshi Sawada,
Tsuyoshi Toyono, Ken Nishimatsu, Akio Watanabe, Akihiro
Shimoda and Kohei Shiomoto, “Spatio-temporal Factorization of Log
Data for Understanding Network Events,” in Proceedings of the 2014
IEEE International Conference on Computer Communications, pp.
610-618.

[9] Sheng Ma and Joseph L. Hellerstein, “Mining Partially Periodic
Event Patterns with Unknown Periods,” in Proceedings of the 17th
International Conference on Data Engineering, pp. 205-214, 2001.

[10] Wei Xu, Ling Huang, Armando Fox, David Patterson and Michael
Jordan, “Mining Console Logs for Large-Scale System Problem
Detection,” in Proceedings of the 3rd Workshop on Tackling
Computer Systems Problems with Machine Learning Techniques,
2008.

[11] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel and Jörg
Sander, “OPTICS: Ordering Points To Identify the Clustering
Structure,” in Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pp. 49-60.

[12] Martin Esler, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu, “A
Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise,” in Proceedings of the 1996 International
Conference on Knowledge Discovery and Data Mining, pp. 226-231.

[13] https://www.splunk.com

[14] https://zhugehq.github.io/logclusterc/

[15] M. V. Ramakrishna and Justin Zobel, “Performance in Practice of
String Hashing Functions,” in Proceedings of the 5th International
Conference on Database Systems for Advanced Applications, pp.
215-224, 1997.

[16] Justin Zobel, Steffen Heinz and Hugh E. Williams, “In-memory Hash
Tables for Accumulating Text Vocabularies,” Information Processing
Letters, Vol. 80(6), pp. 271-277, 2001.

[17] Risto Vaarandi, Bernhards Blumbergs and Emin Çalışkan, “Simple
Event Correlator – Best Practices for Creating Scalable
Configurations,” in Proceedings of the 2015 IEEE International
Multi-Disciplinary Conference on Cognitive Methods in Situation
Awareness and Decision Support, pp. 96-100.

[18] https://www.usenix.org/cfdr

[19] https://ristov.github.io/slct/

