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Abstract—A Network Intrusion Detection System (NIDS) is a
widely used security monitoring technology for detecting attacks
against network services, beaconing activity of infected end
user nodes, malware propagation, and other types of malicious
network traffic. Unfortunately, NIDS technologies are known to
generate a large number of alerts, with a significant proportion of
them having low importance. During the last two decades, many
machine learning and data mining based approaches have been
proposed for highlighting high-importance alerts that require
human attention. However, NIDS alert classification systems
based on active learning have received marginal attention in the
specialized research literature. This neglects the potential benefits
of active learning which involves a human expert in the machine
learning model life cycle. The current paper fills this research
gap and studies the use of active learning techniques for NIDS
alert classification.

Index Terms—NIDS alert classification, active learning

I. INTRODUCTION

A Network Intrusion Detection System (NIDS) is a widely
used network security monitoring technology that has been
adopted by many organizations, with a number of open-source
and commercial NIDS platforms available on the market [1]–
[3]. Unfortunately, NIDS is known to generate large volumes
of alerts, with most of them having low importance. For
example, in [4], the authors described a Suricata NIDS that
generated about 200,000 alerts per day, with over 95% of them
reflecting well-known attacks or being false positives.

In a recent study about Security Operations Centers (SOCs)
[31], NIDS was identified as one of the main SOC technolo-
gies, and the volume of low-priority NIDS alerts as one of the
main challenges for SOC analysts. One particular challenge is
the large number of true alerts (i.e, not false positives, but
reflecting real attacks) which have low importance for the
given environment [31]. For these reasons, alert prioritization
has been identified as one of the most important processes
in a modern SOC [32]. It is worth to make a distinction
between the application of machine learning (ML) for NIDS
alert classification and network intrusion detection. Machine
learning based NIDS involves classifying network flows (or
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packets) that serve as input for the NIDS, whereas NIDS alert
classification focuses on the processing of the NIDS output.
Thus, as highlighted in [33], they are both NIDS-related but
distinct ML classification tasks with different inputs, method-
ology and overall purpose. In this paper, we focus on machine
learning for alert prioritization purposes, assuming that the
NIDS which creates these alerts already exists. More precisely,
we propose Outlier-N, a novel methodology based on active
learning, to enhance machine learning algorithms for NIDS
alert classification.

In order to highlight alerts of high importance which
represent successful intrusions and unusual attacks originating
from sophisticated adversaries, several machine learning and
data mining based approaches have been proposed [5]–[16].
Unfortunately, supervised machine learning approaches (e.g.,
[6], [10]–[13]) require large labeled data sets that are laborious
and time-consuming to create for human experts. Data mining
methods (e.g., [15], [16]) have a similar drawback – the
knowledge detected by these methods has to be interpreted
and turned into alert processing rules by a human expert. As
discussed in [33], unsupervised methods tend to feature higher
false positive rates and can thus be used for ancillary tasks.

The need for large labeled data sets is the main shortcoming
of supervised machine learning methods, and for addressing
this issue, active learning has been proposed. Active learning
aims for training a high-performance supervised classification
model on a small number of labeled data samples in an
iterative fashion and with the support of a human annotator
[17], [18]. Since active learning significantly reduces the
workload of human experts, it has been used in the domain
of network security for various tasks like network intrusion
detection [34], data set generation purposes [19], [20], IoT
botnet detection [21], and classification of NIDS signatures
based on their relevance [22]. However, the use of active
learning for NIDS alert classification has not received enough
attention in prior work.

This paper addresses this research gap and studies active
learning techniques for classifying NIDS alerts. The remainder
of this paper is organized as follows – Section II covers
related work, Section III describes the NIDS alert data set and
the experimental setup, Section IV presents the evaluation of
different active learning techniques on the data set, Section V



discusses the evaluation results, and Section VI concludes the
paper.

II. RELATED WORK AND BACKGROUND KNOWLEDGE

A. Related Work on NIDS Alert Classification

Kidmose et al. [6] proposed a supervised method that treated
NIDS alerts as textual strings without applying any feature
engineering to them. First, labeled training alerts were used
to learn a mapping function for converting textual alerts into
a vector space. For the mapping function, long short-term
memory (LSTM) recurrent neural network and latent semantic
analysis (LSA) were employed. The converted alerts were then
clustered with DBSCAN algorithm, so that the most frequently
occurring alert label was assigned to the entire cluster. During
the NIDS alert classification phase, an incoming alert was
assigned the label of the DBSCAN core point within the ε-
distance, and if there was no such point, the alert was regarded
as a false positive.

Ban et al. [11] evaluated several supervised and unsuper-
vised machine learning algorithms on a large NIDS alert data
set composed of 672,000 alerts. The data set was highly imbal-
anced, with less than 1% of alerts having high importance. The
evaluated algorithms included support vector machine (SVM),
weighted support vector machine (WSVM), decision tree,
AdaBoost, linear discriminant analysis, naive Bayes, k-Nearest
Neighbors, and two isolation forest (IF) based algorithms.
According to the experiments, the best algorithms were SVM,
WSVM, and AdaBoost. IF based algorithms featured the
lowest precision.

Wang et al. [10] proposed a graph based method for
detecting important features in NIDS alert data that helped
to identify false alerts. The experiments were conducted on
an imbalanced data set with less than 6% of alerts having
high importance. According to the authors, gradient boosting
tree models enabled the identification of true and false positive
alerts effectively.

Feng et al. [13] described a user-centric organizational
machine learning framework that processed NIDS alerts and
other security alerts to find users at risk. Security events
were converted into data points that represented users, and
data points were labeled with the help of text mining and
label propagation techniques. The authors evaluated multilayer
neural network (MNN), SVM, random forest (RF), and logistic
regression (LR). MNN and RF provided the best results. Shin
et al. [12] described another organizational machine learning
framework that employed binary SVM and one-class SVM
methods for NIDS alert processing.

Vidović et al. [35] suggested a supervised NIDS alert
prioritization method which was based on the importance
of organizational devices. Each device was described with a
feature vector, where features reflected the behavior of the
device in the network (e.g., the number of bytes sent from
the device). The human expert assigned importance levels
to devices in the training data set, and after training, the
ranking algorithm was used to predict the device importance
for prioritizing relevant NIDS alerts.

Al-Mamory and Zhang [15] proposed a data mining method
that assigned NIDS alerts with the same root cause to one
cluster, so that each detected cluster was represented by a
generalized alert. Generalized alerts were then interpreted by
human experts to write filters for reducing the number of false
positives with the same root cause. Ma et al. [16] suggested
another data mining method that discovered frequent signature
ID patterns from NIDS alert data. Detected patterns were used
by human experts to develop rules for detecting frequent attack
scenarios.

Tjhai et al. [14] suggested an unsupervised method that
employed a self-organizing map (SOM) neural network for
converting NIDS alerts into a two-dimensional map. The map
was then clustered using the k-means algorithm, so that the
alerts from the same activity were assigned to the same
cluster. After that, the detected clusters were turned into data
points, and SOM and k-means clustering were applied again
to identify true and false positive alerts. Shittu et al. [7]
proposed another unsupervised graph based method for NIDS
alert prioritization involving the assignment of similar alerts
into the same graph. For detecting anomalous alert groups,
graphs were compared with each other, and graphs dissimilar
to others received a high priority score.

In [8], an unsupervised framework was described that
employed frequent itemset mining and clustering algorithms
to discover frequent NIDS alert patterns. These patterns rep-
resented alerts of low importance and were used for distin-
guishing important alerts from irrelevant ones. Spathoulas and
Katsikas [9] proposed an unsupervised clustering method for
NIDS alerts that visualized detected clusters for easing the
detection of security incidents.

In [5], SCAS stream clustering algorithm was proposed
for real-time processing of an incoming NIDS alert stream
in an unsupervised fashion. SCAS has been used in a real
Security Operations Center (SOC) for several years, enabling a
significant reduction of the number of NIDS alerts investigated
by human analysts [4]. SCAS first aggregates alerts appearing
for the same external host within a short time frame (e.g.,
5 minutes), creating a data point from these alerts. Data
points that represent frequently occurring NIDS alert patterns
are detected as clusters, and if an incoming data point does
not belong to any of the previously identified clusters, it is
highlighted as an outlier that deserves closer attention.

Van Ede et al. [36] developed a semi-automated method
for classifyings NIDS alerts and other security events which
first identified event sequences originating from the same
device. For each event, preceding events in the same sequence
were analyzed with a deep learning model for identifying
correlations between events, building the attention vector,
and calculating the total attention for each contextual event.
The attention information was then used for clustering event
sequences with DBSCAN algorithm. Detected clusters were
labeled by a human analyst. Labeled clusters allowed for semi-
automated classification of further event sequences. Event
sequences without a matching cluster were manually processed
by a human analyst, updating the database of labeled clusters



during the process.
Although the approach proposed by [36] involved an it-

erative updating of the ML model that resembles active
learning, the approach did not involve the use of a supervised
classifier to select data points for labeling, a central element
of active learning. To better illustrate the inner-working and
conceptualize active learning, the following section provides a
formal definition of it and describes the most common active
learning methods.

B. Background Knowledge on Active Learning

Active learning is an iterative machine learning based mod-
eling process that involves the interaction between a machine
learning model and a human expert annotator as described in
Fig. 1. In the active learning approach, a supervised classifier
is initially trained on a small labeled data set (i.e., the so-called
seed). The classifier is then used to select data point(s) from
an unlabeled data pool and query the label(s) from the human
expert. The human expert labels the selected point(s) and
updates the training data set. The classifier is then retrained on
the updated training data set, and the iterative process of data
point selection and annotation is repeated until convergence or
a specific performance threshold is achieved. Besides, in order
to keep the workload of the human expert minimal, the active
learning process can also be performed until the training data
set reaches a specific size.

  

supervised
classifier

human expert

seed

1st update

Nth update
labeled 
training 
data set

training

training data 
set update 
with labeled 
data point(s)

query the 
label(s) of
selected 
data point(s)

selection of 
unlabeled 
data point(s)
for query

Fig. 1. Active learning.

One of the most commonly used strategies to select data
points for labeling is uncertainty sampling which selects one
point at a time based on an uncertainty measure [17]. With
this strategy, the classifier predicts the labels for all points in
the unlabeled pool, and selects the data point with the least
certain prediction (i.e., the data sample for which the classifier
has the least confident prediction).

There are several ways to measure the degree of uncertainty
of the prediction for the data point x with the predicted label
ŷ. One option is the classification uncertainty score which is
calculated as

U(x) = 1− P (ŷ|x), (1)

and based on it, the data point with the highest score is
selected.

When using the classification margin score, the two most
likely labels ŷ1 and ŷ2 for the data point x are considered
(note that ŷ = ŷ1). This score is calculated as

M(x) = P (ŷ1|x)− P (ŷ2|x), (2)

and the data point with the smallest score is selected (i.e.,
the data point with the smallest difference between the two
most likely predictions).

Suppose that ŷ1, ..., ŷk are all possible labels (i.e., there are
k classes) and pi = P (ŷi|x). Using the classification entropy
score, the data point with the highest score is selected, and
the entropy based score is calculated as follows:

E(x) = −
k∑
i=1

pi ∗ log(pi) (3)

Another commonly used strategy for selecting a data point
for labeling is query by committee [17]. This strategy involves
two or more independent classifiers (i.e., the so-called commit-
tee) that are trained on the same data set but modeling different
hypotheses from the hypothesis space, with each classifier
providing class predictions for all the unlabeled data points in
the pool. Using this strategy, in order to select the data point
for labeling, a disagreement score is calculated that reflects
the degree of disagreement among the classifiers on the data
point class.

In this regard, to calculate the vote entropy score, Eq. 3 is
used with pi = m/n, where m is the number of classifiers
predicting the label ŷi and n is the total number of classifiers.
An alternative scoring measure is the consensus entropy score,
for which Eq. 3 is used with pi set to the average probability
of predicting the label ŷi by the classifiers in the committee. In
other words, if θ1, ..., θn are classifiers in the committee, and
Pθj (ŷi|x) is the probability that the data point x has the label
ŷi according to classifier θj , then pi =

∑n
j=1 Pθj (ŷi|x)

n in Eq.
3. When using vote entropy and consensus entropy scores, the
data point with the highest score is selected for labeling. The
maximum disagreement score relies on the Kullback-Leibler
divergence and is calculated as follows [17]:

KL =
1

n

n∑
j=1

D(Pθj ||PC), where :

D(Pθj ||PC) =

k∑
i=1

Pθj (x̂i|x) ∗ logPθ
j (x̂i|x)

PC(x̂i|x)
,

PC(x̂i|x) =
1

n

n∑
j=1

Pθj (x̂i|x)

(4)

The data point with the highest maximum disagreement
score is selected for labeling.

All the aforementioned methods have the limitation of
selecting one data point at a time for annotation. However,



in some cases it might be desirable to select a larger batch of
data points (e.g., 10 or 20), as that may allow the division of
the labeling workload between several human experts. Such
scenarios are common in SOC environments, where a group
of security analysts are investigating NIDS alerts in parallel
[21].

In order to address such scenarios, Cardoso et al. [18]
proposed the ranked batch-mode active learning strategy.
Suppose that L denotes the data points that have already been
labeled and U the data points in the unlabeled pool of data.
With the ranked batch-mode active learning strategy, a group
of unlabeled data points (batch) are selected based on the
following ranking function which assigns a relevance score
to each data point x:

score(x) = α ∗ (1− Φ(x, L)) + (1− α) ∗ U(x) (5)

In Eq. 5, U(x) denotes the uncertainty score for x, while
Φ(x, L) denotes the highest similarity of x with some already
labeled data point from L. Note that 0 ≤ Φ(x, L) ≤ 1, and
α = |U |

|L|+|U | .
Due to the nature of Eq. 5, α is close to 1 at the beginning

of the active learning training cycle, and thus the similarity
Φ(x, L) has a much larger impact on the data point selection
process than the uncertainty score U(x). Furthermore, accord-
ing to Eq. 5, the data points that have a low similarity with
points from L are preferred. In other words, in the early phases
this strategy tries to select as many different data points as
possible and explore unknown parts of the data point space.
In the later stages of the active learning training cycle, the
classification uncertainty measure U(x) will be given more
weight when points are selected and the similarity Φ(x, L)
will become less important.

Cardoso et al. proposed several similarity measures, includ-
ing traditional similarity functions that range from 0 to 1, but
also distance metrics like Manhattan and Euclidean distance
[18]. In the latter case, the distance metrics must be converted
to similarity measures (e.g., distance of 0 yields a similarity
of 1).

C. Related Work on Active Learning

As mentioned in Section I, active learning has not received
the deserved attention in the context of NIDS alert classifica-
tion. For the sake of completeness, this section provides an
overview of some prominent active learning studies in other
fields of network security.

Beaugnon et al. [19] proposed the use of active learning
for the creation of representative labeled data sets with binary
labels (i.e., malicious and benign) from large unlabeled data
collections. For this purpose, the method used the LR clas-
sifier, and in order to ensure that all types of malicious data
points were included in the labeled data set, the LR model
was trained with sample weights. The proposed method was
implemented in the ILAB system and used for labeling a large
NetFlow data set from a production environment.

Torres et al. [20] suggested another active learning based
methodology for labeling network traffic data sets that relies
on the RF classification model. The authors used Stratosphere
IPS encoding for representing network flows that included
the information about the packet size and the duration and
periodicity of packet exchange. The method was implemented
in the RiskID system and tested on 22 publicly available
network traffic data sets.

Guerra-Manzanares and Bahsi [21] studied the application
of active learning to detect botnet traffic in IoT networks. For
the experiments, a balanced data set of 150,000 data points
with binary labels was used. The authors investigated all major
active learning strategies described in Section II-B, using RF
classifiers. Accoding to their results, active learning based
algorithms achieved high performance with small labeled data
sets and were more resilient to labeling mistakes by human
experts than fully supervised models trained on larger data
sets.

While the aforementioned papers focused on network traffic
data, the work by Kawaguchi et al. [22] addressed NIDS sig-
nature classification (NIDS signatures are not to be confused
with NIDS alerts, since signatures are human-created rules that
generate alerts). Signatures might have different importance in
SOC environments, and the purpose of the proposed method
was to establish the importance level (i.e., low, medium or
high) for new signatures. The method focused on some textual
fields of NIDS signatures and converted them to numeric
vectors. During the experiments, several neural network types
were evaluated in active learning setup. According to the
authors, a system with Monte Carlo dropout (i.e., a deep
learning based uncertainty estimation method) produced the
best results.

The systematization of knowledge by Appruzzese et al.
[34] reviewed semi-supervised machine learning work in the
domains of network intrusion detection, malware detection,
and phishing web site detection. In addition, the work defined
several requirements for evaluating semi-supervised machine
learning methods which are summarized next. In the context of
active learning, evaluations should present the performance of
the classifier that was trained on the seed only, as it constitutes
the lower bound for performance (henceforth denoted as
µ1). Also, the performance of the classifier that was trained
on the entire labeled training data set constitutes the upper
bound for performance (henceforth denoted as µ2). Note that
during evaluation the seed and pool are drawn from the entire
labeled training data set. Therefore, following [34], if µ is the
performance of the active learning model, then the following
condition should be met:

µ1 < µ ≤ µ2 (6)

In other words, the active learning cycle should improve
the initial performance of the classifier (µ1) while generally
the final performance of the active learning model does not
exceed the performance of the fully supervised model (µ2).



In addition, if we define µ3 as the performance of the active
learning model where data points are selected for labeling
using random sampling, then the following condition should
be met:

µ3 < µ (7)

Consequently, if Eq. 7 does not hold, the usage of the
classifier to select data points for labeling can be deemed as
irrelevant.

Other evaluation requirements described by [34] include
the assessment of the statistical significance of the evaluation
results, provide information about the composition of evalua-
tion data sets, ensure that experiments are reproducible (e.g.,
by sharing the data sets and experiment code), and conduct
evaluations using multiple settings. All these requirements are
satisfied in our work and presented throughout the following
sections.

III. METHODOLOGY

A. Data Set

The NIDS alert data set that was used in our experimental
setup was obtained from a production Suricata NIDS in the
SOC of Tallinn University of Technology [4]. At the data
collection time, the NIDS had more than 50,000 signatures and
was running on the external organizational network perimeter.
The data set was collected between January 20 and March 20,
2022 (60 days). It contains 1,395,324 data points with human-
assigned binary labels important and irrelevant which denote
the priority level of the NIDS alert. The data set is highly
imbalanced, as only 20,952 data points (1.5% of data) are
labeled as important. The data set is publicly available from
[23].

To generate data points from textual NIDS alert data, a
customized version of the SCAS stream clustering algorithm
(henceforth CSCAS) was utilized [24]. CSCAS is essentially
the SCAS algorithm [5] augmented with data point generation
functionality. Data point features are outlined in Table I. In this
regard, while data point features were generated by CSCAS,
the data point labels were set by human experts.

CSCAS processes NIDS alerts in a real-time fashion, aggre-
gating alerts triggered by the same external attacking host and
the same signature into the same alert group. Each alert group
contains alerts from a short time frame (i.e., max 5 minutes).
Longer attack activity produces several alert groups.

After producing an alert group, CSCAS assigns it into
a cluster, creating a new cluster if necessary. Each new
CSCAS cluster represents a NIDS signature that has matched
frequently over a longer period of time (e.g., at least once
every hour during the last 10 days). According to previous
research [5], [8], [14], [25], such signatures are highly likely
to produce well-known alerts of low importance and false
positives.

If the alert group G was triggered by the signature S for
which there is a cluster, CSCAS regards G as inlier and assigns
it to the cluster that represents S, otherwise G is regarded as

TABLE I
NIDS ALERT DATA POINT FEATURES

Feature name and type Description
SignatureID numeric ID of the signature

SignatureMatchesPerDay average number of matches per day
by the signature SignatureID

AlertCount number of alerts represented
by the current data point

Proto numeric transport protocol ID
(e.g., 6 denotes TCP and 17 denotes UDP)

ExtIP IP address of the attacker in integer format
(IP address A.B.C.D is represented as:
A ∗ 2563 +B ∗ 2562 + C ∗ 256 +D)

ExtPort port number at the attacking host
(set to -1 if attacks involved multiple ports)

IntIP IP address of the victim in integer format
(set to -1 if the attacker ExtIP targeted

multiple victim hosts)
IntPort port number at victim host(s)

(set to -1 if attacks targeted multiple ports)
〈Attr〉Similarity similarity for the NIDS alert attribute 〈Attr〉.

Set to -1 if the signature signatureID does
(34 features in total) not set 〈Attr〉, otherwise ranges from 0 to 1.

The feature reflects the degree of similarity
for 〈Attr〉 between the current data point

and recent data points from the same cluster.
Similarity overall similarity of the current data point

with recent data points from the same cluster
(calculated as an average of 〈Attr〉Similarity

values that are not set to -1)
OutlierIndicator set to 1 if data point is an outlier,

and set to 0 if data point is an inlier

outlier and assigned to the special cluster of outliers. Also,
in order to adjust to environment changes, CSCAS drops a
cluster if the signature it represents is no longer frequently
matching.

At the time of data set generation which lasted for 60 days,
the number of clusters fluctuated between 40 and 43. CSCAS
detected 1,322,652 inliers (94.8% of data) that were generated
by 44 signatures and 72,672 outliers (5.2% of data) from 547
signatures. In the case of inliers, 77.9% were generated by just
5 signatures which detect well-known low-priority attacks such
as scans for old vulnerabilities. In other words, most NIDS
alerts have low importance and most of them are generated
by a small number of prolific signatures (the same observation
has been made by previous works in the research domain [5],
[8], [14], [25]).

Since CSCAS clusters correspond to such signatures, inliers
usually represent NIDS alerts of low importance. For example,
in the NIDS alert data set, only 195 inliers (i.e., 0.01%
from all 1,322,652 inliers) are labeled as important. Also, the
set of outliers contains the vast majority of important data
points (20,757 out of 20,952, i.e., 99.1%). On the other hand,
many outliers are found irrelevant (51,915 out of 72,672, i.e.,
71.4%).

When the alert group is assigned to a cluster (or the cluster
of outliers), CSCAS generates the data point representative for
the alert group, using the information about the cluster mem-
bers seen in the past (Table I describes the data point features).



While most features are numerical (e.g., 〈Attr〉Similarity), the
data point has also some categorical features (e.g., Proto,
ExtIP, and ExtPort).

From the generated features which are described in Table I,
it is worth highlighting that 〈Attr〉Similarity features report a
measure of a frequency that NIDS alert attribute values have
been observed in the past. For example, if the ExtIPSimilarity
feature is set to 0.5, then 50% of the most recently seen alert
groups from the given cluster originated from the same attack-
ing host as the current alert group. For the sake of brevity, we
defer to the original paper for a thorough description of the
algorithm inner-working [5].

Besides, some 〈Attr〉Similarity features might not be rele-
vant for the given alert group and are thus set to -1 in the
generated data point. For instance, if the alert group has been
triggered by the signature that matches SMTP traffic, then
HTTP related similarity features like HttpUserAgentSimilarity
and HttpUrlSimilarity are meaningless (i.e., not applicable)
and are thus set to -1.

B. Experimental Setup

In order to benchmark different active learning methods, we
divided the NIDS alert data set into training and test data sets
as described in Table II. The training data set was composed
of all alerts from the first 12 days (January 20 – January
31, 2022), corresponding to 20% of the whole data set. The
remaining data was included in the test data set, thus involving
alerts from the following 48 days (February 1 – March 20,
2022) and corresponding to 80% of the collected data set.

TABLE II
NIDS ALERT DATA SET

Training data Test data
Time Jan 20 – Jan 31 Feb 1 – Mar 20

(12 days) (48 days)
# of data points 278,385 1,116,939

(20.0% of data) (80.0% of data)
# of important 3,227 17,725

data points (1.2% of training data) (1.6% of test data)
# of irrelevant 275,158 1,099,214

data points (98.8% of training data) (98.4% of test data)
# of signatures 239 563

The chronological arrangement mimics the NIDS alert han-
dling in production environments, where human analysts use
past alert data to train classification models without any knowl-
edge about the nature of future alerts. Also, this arrangement
allows the evaluation of the suitability of a machine learning
model to handle new threats emerging over time [26]. For
example, as Table II illustrates, alerts in the training data
set were generated by 239 signatures, while the test data set
contained alerts from 563 signatures (i.e., more than half of
these 563 signatures did not trigger any alerts during the
12 days that the training data covered). Therefore, as the
training data originates from an earlier time frame, it becomes
possible to evaluate on test data how accurately NIDS alerts
from previously unseen signatures are classified. This realistic

scenario is usually not addressed in the experimental design
of related work, which use the standard machine learning
procedure to split the dataset (i.e., random training/test split),
and, consequently, neglect the impact of time and evolution of
threats, reporting over-inflated and unrealistic results provoked
by temporal snooping [27].

For all active learning experiments, we employed the modAL
active learning library [28]. The supervised classification
model used in the active learning training cycle (see Fig. 1)
was implemented using the scikit-learn default class for RF
with 100 estimators [29]. RF was chosen as classification
model since it can easily handle data sets that contain categori-
cal features. Also, based on recent studies, it has demonstrated
the best performance on security data sets in active learning
implementations [20], [21]. For the sake of repeatability, we
make publicly available the code used for our experiments 1.

As can be seen from Table II, the NIDS alert data are
highly imbalanced. To address this issue, for all experiments
where training data was not balanced, we trained RF with
corresponding class weights inversely proportional to class
frequencies (this training mode was implemented using the
class weight=balanced setting of the class object [29]). To
assess the performance of RF classifiers, we evaluated their
generalization capabilities on the test data set (described in
Table II), using F1-score as a comparative performance metric.
The F1-score is the harmonic mean of the precision P and
recall R, and is calculated as follows:

F1 = 2 ∗ P ∗R
P +R

(8)

The nature of the F1-score allowed us to report the per-
formance of an RF classifier with a single metric, leading
to a more compact presentation of the experiment results (in
some cases, we also reported the precision and recall for the
sake of a more detailed comparison). Because all experiments
described in this paper involved stochastic processes like
random sampling, every particular experiment was repeated
10 times, and all F1-scores reported in this study are average
values of 10 iterations performed per individual experiment
(i.e., particular settings). All experiments were conducted on
a Rocky Linux 8 server with the Intel Xeon E5-2630Lv2 CPU
and 64GB of memory.

IV. RESULTS

A. Baseline Performance

In order to establish a performance baseline before evalu-
ating active learning methods, we trained RF in a traditional
supervised learning fashion, using the whole labeled training
data set (described by the middle column in Table II). Note that
this baseline represents the upper bound for the performance
of active learning models (i.e., µ2 in Section II-C, Eq. 6).

Since the training data was imbalanced, we trained the RF
model with class weights as discussed before. In addition, we
also trained a regular RF model (i.e., without employing the

1https://github.com/ristov/nids-al-scripts



class weights) on balanced data sets obtained with random
undersampling and oversampling balancing techniques. With
random undersampling, the majority class irrelevant was re-
duced to 3,227 data points to achieve a balanced data set,
whereas with random oversampling, instances of the minority
class important were replicated for having the balanced data
set of 275,158 data points per class. Table III presents the
performance of the above three methods in terms of F1-score.

TABLE III
SUPERVISED LEARNING: DATASET AND PERFORMANCE

RF with RF with RF with
class weights oversampling undersampling

Training set 278,385 550,316 6,454
F1-score 0.915 0.927 0.855

According to Table III, RF with random undersampling
featured the lowest F1-score of 0.855. This result illustrates
the fact that learning from smaller labeled data sets can be
challenging, and that undersampling might exclude important
knowledge from the original training data. On the other hand,
the F1-scores of RF with class weights and oversampling are
similar, exceeding 0.91.

B. Uncertainty Sampling: Fixed Seed and Varied Pool Sizes

The first active learning method we evaluated was un-
certainty sampling (henceforth US). We used a seed (initial
labeled training data set) of 100 labeled data points and
experimented with varied pool sizes of [1,000, 2,000, ...,
10,000] unlabeled data points. Both the seed and the pool were
randomly sampled from the training data set (see the middle
column in Table II).

During the active learning based training experiment, up to
1,000 data points were selected from the pool and presented
to the human expert as a labeling query. For selecting a data
point to query, the classification uncertainty score was used
(as described in Section II-B, Eq. 1). The labeling work of
the human expert was simulated by using the ground-truth
labels present in the data set. Fig. 2 depicts the performance
of 10 active learning training cycles with different pool sizes.
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Fig. 2. F1-score of US with random sampling based seed and pool

In addition, we conducted the same experiments using active
learning with random sampling strategy, i.e. the data points for
labeling were selected at random from the pool (note that the
performance of this model represents µ3 as defined in Section
II-C, Eq. 7). The results of these experiments are displayed in
Fig. 3.

As the comparison of Fig. 2 and Fig. 3 indicates, US based
data point selection yielded better performance than random
sampling based data point selection – the performance of US
models improved faster and featured significantly higher F1-
scores. In other words, traditional active learning, where a
classifier is leveraged to select data points for labeling, offered
clear performance advantage over random data point selection.
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Fig. 3. F1-score of random sampling based data point selection

As Fig. 2 shows, initial F1-scores of US models (i.e., trained
only on the seed data set) were around 0.4. Note that these
F1-scores correspond to the lower performance bound, µ1

as defined in Section II-C, Eq. 6. However, as data points
were selected from the pool, queried for labels, and added
to the training data set, the performance quickly improved.
All models reached their peak performance with less than 100
queried data points and no improvement was observed with
additional queries.

Based on Fig. 2, the largest pool, composed of 10,000 data
points, yielded the best performance. Fig. 2 also indicates
that increasing the pool size was usually providing a better
final performance. Even though US allowed us to train a
supervised classifier with a moderate labeling effort (e.g., the
models involved the labeling of at most 1,100 data points),
the final performance of the models in Fig. 2 was inferior to
the baseline performance (see Table III). In addition, when
we evaluated US with classification margin (Section II-B, Eq.
2) and classification entropy scores (Section II-B, Eq. 3), the
observed performance was similar as in Fig. 2.

Therefore, despite enabling fast learning with a significantly
smaller training data set, this standard active learning strategy
did not outperform the baseline. This observation raises the
following question – can the performance of active learning
models for NIDS alert classification be improved beyond the
upper bound that semi-supervised methods generally have (µ2



in Section II-C, Eq. 6)? The following section proposes a
method for addressing that question.

C. Enhancing Active Learning with Outlier-Centric Data Sets

When investigating the performance of the active learning
models described in the previous section, we also studied the
precision and recall of the models (see Fig. 4 and Fig. 5).

0 100 200 300 400 500 600 700 800 900 1000
# of data points queried for labels

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pr
ec

isi
on

pool size
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

Fig. 4. Precision of US with random sampling based seed and pool
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Fig. 5. Recall of US with random sampling based seed and pool

As shown in Fig. 4, all models featured a final precision
within the range 0.87–0.91. In contrast, recall values were
significantly lower, with the smallest pool yielding a final
recall value of about 0.7 (see Fig. 5).

Since low recall indicates that a significant proportion of
important data points are misclassified, we hypothesized that
seed and pool data sets might not have included enough im-
portant data points for the model to learn how to discriminate
them effectively. This hypothesis is also supported by Fig. 2 –
the initial performance of the models is low, and classification
performance plateaus around 100 queries in all cases.

As a strategy to improve the performance of active learn-
ing models so that they overcome fully supervised learning
models, this paper proposes a method to create outlier-centric
data sets for seeds and pools. The proposed method relies on

the following observation – as discussed in Section III-A, a
data point that is an inlier is highly likely to belong to the
irrelevant class. While outliers do not belong predominantly
to a particular class (irrelevant or important), the set of outliers
contains the vast majority of important data points. Therefore,
increasing the proportion of outliers in the training data set
would also increase the proportion of important data points,
thus providing a more representative and larger sample of data
points to the classification model to learn how to discriminate
this class effectively.

In contrast, using random sampling to generate the seed and
pool yields data sets where the proportion of important data
points is the same as in the original data set. Since important
data points constitute only 1.2% of the original training data
(see the middle column in Table II), random sampling based
seeds and pools are unlikely to include enough important data
points to induce high-performance active learning models.

Given the above considerations, we propose the following
method, called Outlier-N, to generate the seed and pool data
sets. Let N ∈ R and N ∈ (0, 100], where N reflects the
desired proportion of outliers in the seed and pool data sets.
In order to generate the data set, Outlier-N takes the following
two steps:
• use random sampling to select N% data points from the

set of outliers,
• use random sampling to select the remaining (100−N)%

data points from the set of inliers.
Note that using higher N values allows for making seeds

and pools outlier-centric. Also, the Outlier-N method does
not require the application of an outlier detection algorithm
to the training data set, because the OutlierIndicator feature
reflects whether a data point is an outlier or inlier (see Table
I). Therefore, the Outlier-N method has a low computational
cost.

The performance of the suggested methodology, Outlier-N,
to build seeds and pools is evaluated in the following section.

D. Active Learning with Outlier-N Method

This section explores the performance of Outlier-N for
active learning strategies described in section II-B: US (uncer-
tainty sampling), query by committee, and ranked batch-mode
active learning.

1) Uncertainty Sampling with Outlier-N method:
In Section IV-B, we evaluated active learning for seeds and

pools created with traditional random sampling based method,
using US to select data points for labeling queries. To illustrate
the benefits of the Outlier-N method for creating seeds and
pools, we have evaluated it for US based active learning as
described in Section IV-B. For the sake of conciseness and
interpretability of the results, only the results for pool sizes of
1,000, 2,000, 5,000, and 10,000 data points are reported. The
results for other pool sizes were close to these and have been
thus omitted. The selection of unlabeled points from the pool
was based on the classification uncertainty score (as described
in Section II-B, Eq. 1). We tested the Outlier-N method for



data sets generation using the following values of N: 30, 50,
70, and 90. The seed and pool for each iteration were built
with the same value of N.

Fig. 6 depicts the performance of US active learning with
the Outlier-N method. Note that the results for classification
margin (Section II-B, Eq. 2) and classification entropy (Section
II-B, Eq. 3) scoring strategies closely matched the results
reported in Fig. 6 and have been omitted for the sake of brevity.

As the comparison of Fig. 2 and Fig. 6 reveals, Outlier-
N provided better performance than random sampling for
all evaluated pool sizes. For example, the smallest pool size
provided F1-scores in the range from 0.85 to 0.9 for Outlier-N,
while with random sampling F1-score values remained below
0.8. For the largest pool size, the Outlier-70 and Outlier-
90 methods yielded F1-scores of 0.95 and higher, while for
random sampling the F1-score remained below 0.9.

Furthermore, the Outlier-N method provided a significantly
higher recall than random sampling. For example, as the
comparison of Fig. 5 and Fig. 7 shows, the final recall
improved from 0.7 to 0.87 with Outlier-90 for the smallest
pool size and from 0.85 to 0.92 for the largest pool size. The
Outlier-N method also yielded higher precision than random
sampling for all pool sizes.

More importantly, unlike random sampling, the usage of
Outlier-N to build seeds and pools allowed the active learning
strategy to outperform traditional supervised classification
models (see Table III). For the pool size of 10,000, Outlier-
N provided better performance for all evaluated values of
N, while for the pool size of 5,000, Outlier-50, Outlier-70,
and Outlier-90 produced a better performance than supervised
classifiers.

In relation to seed generation, Outlier-N based seeds pro-
vided better initial performance for the US active learning
strategy than random sampling based seeds, especially for
larger values of N. The initial F1-score for random sampling
based seed was around 0.4, while for Outlier-50, Outlier-
70, and Outlier-90 it was above 0.75, with Outlier-90 pro-
ducing the best results. However, although Outlier-N based
seeds offered significantly better initial performance, the active
learning strategy reached its peak performance more slowly in
the case of larger pools. For example, according to Fig. 2, the
highest performance was achieved with less than 100 queried
data points, while with Outlier-N 300-500 queried data points
were needed for pool sizes of 5,000 and 10,000. On the other
hand, although with smaller pool sizes of 1,000 and 2,000
the highest performance was reached faster, the performance
started to degrade after the peak.

Similar to random sampling based pools (Fig. 2), larger
Outlier-N based pools usually yielded better performance than
smaller pools. The only deviations from this trend occurred at
early stages of the active learning training cycle, where F1-
scores for smaller pool sizes were occasionally slighty higher.

Finally, as can be observed in Fig. 6, increasing the value of
N (i.e., the proportion of outliers in the seed and pool) had a
direct impact on the performance, increasing it. Larger values
of N also decreased the performance gap between different

pool sizes (e.g., performance difference for pool sizes of 5,000
and 10,000 was smallest for N = 90).

To provide a full coverage of the impact of the hyper-
parameter N, we also evaluated the Outlier-100 method which
builds seeds and pools solely from outliers. Fig. 8 depicts
the performance of this method. As can be noticed in Fig. 8,
US models were not stable and featured significantly lower
performance when compared to data from Fig. 6. The primary
reason for this was the low precision of the models, with
a large number of irrelevant data points being mistakenly
classified as important. As Fig. 8 indicates, the presence of
inliers is important in seeds and pools, since it allows for
proper detection of irrelevant data points (as discussed in
Section III-A, the vast majority of inliers belong to this class).

Since the labeling work performed by human experts is
expensive, we also investigated a scenario where the initial
annotation effort was minimal, and a small seed of only
10 data points was used. As in the case of seeds of 100,
Outlier-90 offered the best final performance (see Fig. 9). The
performance results for Outlier-30, Outlier-50, and Outlier-70
methods showed similar trends, and have been omitted for the
sake of brevity.

As can be observed in Fig. 9, the initial performance for
the 10 point seed was very low, with the F1-score value being
about 0.2 for all models. However, with fewer than 50 queried
data points, the performance rapidly improved. Interestingly,
the model with the largest pool size of 10,000 performed the
worst when fewer than 200 data points had been queried, but
became the best model after 400 queries. When comparing this
model to the model with the 100 point seed and 10,000 point
pool (Fig. 6), it is worth to note that the model with a smaller
seed reached the F1-score of 0.95 quicker (after 400 queried
data points) than the model with a larger seed which achieved
this performance after 500 queried data points. In addition,
although the peak performance of the models was comparable,
the model with a smaller seed occasionally featured a higher
F1-score (e.g., after 800 queried data points).

To summarize the main findings for the US based ac-
tive learning strategy with the Outlier-N method, the results
demonstrated that larger values of N, which increase the
proportion of outliers in the seed and pool, yielded the best
peak performance. Larger pools yielded better peak perfor-
mance than smaller pools, and also outperformed traditional
supervised classifiers (see Table III). Despite that more queried
data points were needed to reach the peak with larger pools, the
performance of these models did not degrade significantly after
the peak. Finally, the use of a small seed (e.g., 10 data points)
offered a fast learning curve and a similar peak performance
to a larger seed (e.g., 100 data points), but provided lower
performance in the early stages of the active learning training
cycle.

To assess the computational cost associated with the training
of US based models, we measured the CPU time that was spent
to train these models with the Outlier-90 method. For four
pool sizes evaluated in this section, the CPU time consumed
by the entire active learning cycle ranged from 249 to 418
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Fig. 6. F1-score of US with Outlier-N.
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Fig. 7. Precision and Recall of US with Outlier-90.

seconds (about 4-7 minutes). Smaller pools required less CPU
time, since the RF classifier had less data points to process
for uncertainty sampling.

We also measured the CPU time that was spent by the
models to classify the test data set (see right column in Table
II). In all cases, less than 10 seconds of CPU time were
needed. These findings indicate that US based models with RF
classifiers involve low computational costs and can be used on
commodity hardware.
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Fig. 8. F1-score of US with Outlier-100.

Since the active learning models discussed in the remainder
of this section showed similar CPU time for test data classifi-
cation (less than 10 seconds), only the computational cost of
training is discussed in the following subsections.

2) Query by Committee with Outlier-N Method:
We also evaluated the impact of the Outlier-N method on the

query by committee (henceforth QbC) based active learning.
In this active learning setup, a committee, which consists of
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Fig. 9. F1-score of US with small seed and Outlier-90

two or more independent classifiers, is employed to select data
points from the unlabeled pool for labeling queries. The query
point selection is based on a score that reflects the degree of
disagreement of the committee members on the data point
class (i.e., a measure of label uncertainty).

For these experiments, we evaluated committee sizes of 2, 3,
5, and 10, with each committee member being an independent
RF classifier. For query data point selection, QbC models with
three different disagreement scores (discussed in Section II-B)
were evaluated – consensus entropy score (henceforth QbC-
CE), vote entropy score (henceforth QbC-VE), and maximum
disagreement score (henceforth QbC-MD). As in the previous
experiments the largest pool yielded the best performance
results, we used a fixed pool of 10,000 data points. The seed
size was set to 100.

Table IV displays the CPU time needed to complete the
whole training for different QbC models. As can be seen,
larger committees needed more computational resources, and
the highest recorded CPU time consumption was about 95
minutes (observed for QbC-CE with 10 committee members).
In contrast, the smallest committees, composed of 2 members,
consumed only about 12-18 minutes of CPU time.

TABLE IV
TRAINING CPU TIME FOR QBC METHODS (SECONDS)

Committee size QbC-CE QbC-VE QbC-MD
2 1,084 812 718
3 1,160 1,387 1,341
5 2,330 2,281 2,000
10 5,696 5,022 3,649

Fig. 10 displays the performance of evaluated models. Since
the Outlier-N method yielded better performance for larger
values of N, we have only reported data for Outlier-30 and
Outlier-90 in Fig. 10 to compare the methods with the lowest
and highest performance. In this regard, as Fig. 10 shows,
Outlier-90 method outperformed Outlier-30 in all models,
producing a better initial performance and reaching a higher
peak performance.

Of the three evaluated QbC scoring metrics, QbC-CE (the
first row in Fig. 10) featured the best peak performance, both
for Outlier-30 and Outlier-90. For Outlier-90, the F1-score
value was the higher and more stable in the later stages of the
active learning training cycle, with all four models converging
to an F1-score value of 0.96.

In the case of QbC-CE, the size of the committee did not
notably influence the performance (apart from a few minor
differences in the earlier stages of the active learning training
cycle). Since training a model with a larger committee requires
more computational resources, QbC-CE allows for building
low-cost active learning models that feature high performance.

For QbC-VE (the second row in Fig. 10), the size of the
committee had a slight impact on performance, especially in
the case of the Outlier-30 method where F1-scores could differ
by 2%. For Outlier-90, performance differences were more
noticeable in the early stages, with fewer than 100 queried
data points, with the largest committee clearly outperforming
smaller configurations. However, the performance of QbC-VE
models started to slowly degrade after a few hundred queries.
For example, the best performance for QbC-VE (i.e., F1-score
of 0.95) was produced by Outlier-90 after about 300 queries.
After that, the F1-score value slowly decreased by about 2-3%.

Regarding the QbC-MD models (the third row in Fig. 10),
the committee size had a clear implact on the model per-
formance, with larger committees providing better perfor-
mance metrics. However, the difference was less noticeable
for Outlier-90 with committee sizes of 5 and 10. Although
the best performance for QbC-MD models (i.e., F1-score of
0.94) was lower than observed for QbC-CE and QbC-VE, the
models featured a monotonously increasing curve for F1-score
(that stands in contrast with results for QbC-VE models).

To summarize the main findings for QbC based active
learning with the Outlier-N methodology, the best perfor-
mance was produced by Outlier-90 with peak F1-scores of
0.96, 0.95, and 0.94 for QbC-CE, QbC-VE, and QbC-MD
respectively. This implies that QbC based active learning with
the Outlier-90 method outperformed traditional supervised
classifiers (Table III) for all disagreement scores. QbC-CE
models demonstrated high F1-scores for small committees,
with all evaluated committee sizes producing almost identical
performance. This brings an opportunity for building cost-
efficient and high-performance active learning models with
small committees. In addition to providing the highest F1-
scores, Outlier-90 based QbC-CE models also featured a high
degree of stability in the later stages of the active learning
training cycle.

3) Ranked Batch-Mode Active Learning with Outlier-N
Method:

In our last round of experiments, we evaluated the impact of
the Outlier-N method on the ranked batch-mode active learn-
ing strategy (henceforth RBMAL). As for the QbC models,
we used a fixed seed of 100 data points and a fixed pool
of 10,000 data points. We conducted experiments using three
different batch sizes – 10, 20, and 50 data points. In other
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Fig. 10. F1-score of QbC with Outlier-30 and Outlier-90.

words, for each labeling query the given number of unlabeled
data points were selected from the pool, that is, a batch of
data points instead of a single data point as in the previous
strategies.

The modAL active learning library used during the experi-
ments allowed us to specify a distance function to measure the
similarity between data points. As in our case the data points
have a significant number of categorical features, traditional
distance metrics like Euclidean or Manhattan distance are not
meaningful for measuring the similarity between data points.
We experimented with three custom distance functions instead.

As discussed in Section II-B, the purpose of the distance
function is to allow the effective sampling of unexplored
regions of the data point space in the early stages of the active
learning training cycle. In this regard, let’s suppose that x

and y are data points. Also, suppose that sid(x) and sim(x)
denote the values of the SignatureID and Similarity features
for data point x respectively. Provided that a distance between
data points x and y needs to be calculated, all three custom
distance functions we used for experiments return values in
the range [0,1] and are defined as follows:

fconst(x, y) = 0 (9)

fsigid(x, y) =

{
0, if sid(x) = sid(y)

1, if sid(x) 6= sid(y)
(10)

fsim(x, y) = |sim(x)− sim(y)| (11)



The function fconst regards all points entirely similar (dis-
tance 0 is converted to similarity 1), and thus only uncertainty
score is considered when selecting data points from the pool
with the ranking function (as described in Section II-B, Eq.
5).

The function fsigid regards points for the same signature
ID entirely similar, and the ranking function thus prefers to
include data points for as many signatures as possible in the
training data set. In other words, since each NIDS signature
represents a different attack scenario, fsigid tries to cover as
many scenarios as possible, so that selecting such diverse
training data would lead to a high-performance classification
model.

The Similarity feature of a data point reflects its similarity
with other data points from the same cluster. As discussed in
Section III-A, all outliers are assigned to a special cluster of
outliers. However, as outliers are usually dissimilar to each
other, the Similarity feature tends to have a lower value for
outliers. In contrast, inliers are usually similar to other cluster
members, and therefore the Similarity feature tends to have
a higher value for inliers. Given the nature of the Similarity
feature, fsim will try to cover data points with a varying degree
of similarity to other cluster members. In that way, fsim will
make sure that the training data set includes unusual inliers and
outliers (i.e., inliers which are dissimilar and outliers which
are similar to other cluster members).

Table V displays the CPU time for training different RB-
MAL models during the active learning cycle. As discussed
in [18], building the batch involves calculating pair-wise
distances between labeled data points in the training data
set and unlabeled data points in the pool. Since this step
is computationally expensive, RBMAL models needed more
CPU time for training than QbC and US models. Besides, as
Table V shows, the complexity of the distance function had
a direct impact on time consumption. The simplest function,
fconst, needed the least amount of CPU time (about 86-
96 minutes), while fsim required about 161-169 minutes to
complete the whole training.

TABLE V
TRAINING CPU TIME FOR RBMAL MODELS (SECONDS)

Batch size fconst fsigid fsim
10 5,189 8,144 9,641
20 5,761 8,402 10,130
50 5,501 7,528 9,880

Fig. 11 displays the performance of the RBMAL strategy
using the aforementioned distance functions for the Outlier-30
and Outlier-90 methods. Note that as batch sizes of 10 and
20 samples featured similar performance, we have omitted the
results for batch size 20 from Fig. 11 for the sake of brevity.
Outlier-90 produced a better performance than Outlier-30,
featuring a significantly higher initial F1-score of over 0.8,
while for Outlier-30 the initial F1-score remained below 0.65.
Besides, Outlier-90 reached a higher peak F1-score (about
0.95), outperforming Outlier-30 by about 2%. According to

Fig. 11 and Table III, RBMAL models with the Outlier-90
method reached a better peak performance than traditional
supervised classifiers, while RBMAL with Outlier-30 offered
a similar performance to the best supervised classifier.

As Fig. 11 indicates, the batch size did not influence the
peak performance of RBMAL which was typically achieved
during the later stages of active learning. On the other hand,
the largest batch size of 50 tended to yield a lower performance
than smaller batch sizes during the early stages of the active
learning training cycle. For example, with Outlier-30, the F1-
score for the batch size of 50 improved more slowly when
the first 100 data points were queried for labels. For Outlier-
90 and batch size of 50, the F1-score for the fconst distance
function dropped suddenly after 150 queried data points to a
lower value than for other batch sizes. Also, the F1-score for
the fsim distance function and Outlier-90 was the lowest for
the batch size of 50 between 200 and 300 queried data points.
These observations suggest that larger batch sizes can lead to
longer learning curves for RBMAL models, thus making the
training less efficient.

When comparing the performance for the evaluated distance
functions, we observed some differences for the earlier stages
of the active learning training cycle, while in later stages
the performance for the three distance functions was almost
identical (Fig. 11). The fconst distance function performed
well, despite that it only considered uncertainty score for
selecting the query data points. Except for the largest batch
size of 50, fconst offered the best overall performance. As for
other distance functions, fsigid tended to offer a slightly better
performance than fsim. The fsigid function was particularly
well suited for the batch size of 50, outperforming other
distance functions in the earlier stages of the active learning
training cycle.

Since identifying the right distance function for a data set
with categorical features is not always an easy task, these
findings illustrate that for NIDS alert data a trivial distance
function like fconst which only considers classification un-
certainty, can yield RBMAL models with high F1-scores.
Furthermore, for larger batch sizes, similar peak F1-scores
can be achieved by a simple distance function like fsigid
which attempts to include data points from as many different
signatures as possible in the training data set. Finally, using
simple distance functions can help reduce the computational
cost of training RBMAL models.

V. DISCUSSION

This section summarizes the experimental results presented
in Section IV and highlights our main findings, comparing the
performance of different active learning techniques discussed
in Section II-B.

Based on the experimental results reported in Section IV-
A, specific traditional supervised learning algorithms (i.e., RF
with class weights and RF with oversampling) can achieve
high F1-scores on a NIDS alert data set ranging from 0.91
to 0.93 (Table III). The evaluation of the US active learning
models with seeds and pools that are built using random
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Fig. 11. F1-score of RBMAL with Outlier-30 and Outlier-90

sampling (Section IV-B), demonstrated the learning limitations
of such traditional approach. The F1-scores of US models
did not exceed 0.90 and thus remained inferior to traditional
supervised learning.

These results motivated us to propose the Outlier-N method
for building more suitable-for-learning seeds and pools. This
methodology ensures that N% of data points are outliers in the
seed and pool data sets. Compared to the traditional approach
to generate seed and pool data sets using random sampling,
such outlier-centric seeds and pools contain more data points
generated by less frequently matching signatures, thus in-
ducing better learning. Unlike inliers, outliers do not belong
predominantly to one particular class, and as we hypothesized
in Section IV-C, outlier-centric seeds and pools contain more
useful information for active learning based training. This
hypothesis is empirically supported by the results obtained
and reported in Section IV-D.

When experimenting with different pool sizes for the US
active learning strategy, we found that increasing the pool size
was usually beneficial for performance (Fig. 6). For the sake
of comparison, most of the experiments were conducted with
a seed of 100 data points. However, we also experimented
with a small seed of 10 points. In this latter regard, while
US models with small seeds learned rapidly and eventually
reached the same performance as models with larger seeds,
their initial performance was very low, with F1-scores around

0.2 (Fig. 9).
When comparing customary random sampling based seeds

and pools with the ones built with the Outlier-N method, we
found that larger values of N and larger pool sizes yielded
better performance than random sampling, and also allowed
outperforming traditional supervised learning (see Table III,
Fig. 2, and Fig. 6). The highest peak performance was pro-
duced by the US model with the pool of size 10,000 built using
the Outlier-90 method. The F1-score of such model converged
to 0.95. Similar to US models, the best performance for QbC
and RBMAL active learning strategies was achieved with the
Outlier-90 method. In the case of the best QbC models, F1-
scores converged to 0.96 with the pool size of 10,000, whereas
for the best RBMAL models the F1-scores converged to 0.95.

Table VI provides a pair-wise comparison of the top per-
forming classifiers for all the strategies evaluated in this work.
More precisely, the following models are compared:

• Three supervised models described in Section IV-A: (i)
RF with oversampling (henceforth, S-Over), (ii) RF with
undersampling (S-Under), and (iii) RF with class weights
(S-WRF),

• The best US active learning model using traditional
random sampling based seed and pool as described in
Section IV-B (henceforth, US-trad),

• The best models for US, QbC, and RBMAL with the
Outlier-N method (described in Section IV-D).



For proper comparison, we performed 20 runs for each
model and recorded the peak F1-score achieved. For US,
QbC, and RBMAL strategies, the best classifiers were the
following: US with Outlier-90 (henceforth, US-90), QbC-CE
with 3 committee members with Outlier-90 (QbC-CE-90), and
RBMAL with batch size of 10, fconst distance function, and
Outlier-90 (RBMAL-90).

Following [34], [37], [38], we used Wilcoxon signed-ranks
test to evaluate the statistical significance of the difference in
performance scores between pairs of classifiers trained using
different strategies (i.e., clfA, clfB), i.e., hypothesis testing
[37]. The null hypothesis (H0) is that the performance of the
classifiers is equivalent, i.e., there is no significant difference
between the classifiers (F1-score(clfA) = F1-score(clfB),
while the alternative hypothesis (H1) is that they are not
equivalent (F1-score(clfA) 6= F1-score(clfB), i.e., there is
significant difference between their performance scores. The
test outcome enables to accept or reject the null hypothesis
and, therefore, evaluate the difference between the training
approaches. The first two columns of Table VI report the
average and standard deviation of each classification model
for 20 runs (n = 20). The remaining columns report the
matrix of p − values as the outcome of the Wilcoxon test,
which is symmetric over the main diagonal (gray cells). For
the sake of understanding, reported p− values are equated to
confidence levels in the footnote and highlighted with different
colors in the matrix, i.e., different green tones are associated
to different levels of statistical significance as specified in the
table footnote.

As can be observed, active learning strategies in combi-
nation with the Outlier-90 method provided the highest per-
formance scores, yielding significantly better results than all
supervised and traditional active learning approaches. Among
the three strategies using Outlier-90, uncertainty (US-90) and
query by committee (QbC-CE-90) can be deemed as equiva-
lent, with no statistical difference between their performance
scores. The ranked-batch active learning strategy (RBMAL-
90), despite outperforming supervised and active learning
baselines, ranks in third position, being inferior to US-90 and
QbC-CE-90.

Therefore, when using outlier-centric seeds and pools, all
active learning techniques described in Section II-B achieved
higher performance than traditional supervised learning meth-
ods and, as Table VI illustrates, these findings are statistically
significant. Since active learning requires significantly less
human labeling effort, using it with outlier-centric seeds and
pools is a relevant and efficient alternative to traditional
supervised learning when NIDS alerts are classified in SOC
environments, in which a limited amount of human resources
are available for labeling tasks.

Regarding QbC based active learning, we found that except
for QbC-MD models, the committee size did not influence
model performance significantly. Besides, unlike other models,
the performance of QbC-VE started to deteriorate after a few
hundred queries. Among the evaluated QbC active learning
strategies, QbC-CE offered the best performance and the

greatest degree of stability (Fig. 10).
As for RBMAL, we observed that the batch size did not

influence the model performance significantly during the later
stages of the active learning training cycle. Its effect was more
noticeable during the earlier stages, with the largest batch size
of 50 showing longer learning curves. Concerning the distance
function, we found that a trivial distance function fconst
(Section IV-D-3, Eq. 9) produced the best overall performance
for all batch sizes, except for the largest one, despite that
this distance function disables similarity based data point
selection and only considers the classification uncertainty
score. For the largest evaluated batch size, the fsigid distance
function (Section IV-D-3, Eq. 10) outperformed other distance
functions.

When comparing US, QbC, and RBMAL models for the
Outlier-90 based 100-data-points seed and 10,000-data-points
pool (see Fig. 6, Fig. 10, and Fig. 11), QbC-CE converged to
the highest F1-score of 0.96, outperforming US and RBMAL
strategies. However, QbC-VE and QbC-MD had a lower peak
performance than US and RBMAL. In addition to yielding
the highest F1-scores and a great degree of stability, QbC-CE
models also featured the fastest learning rate – the F1-score of
0.95 was achieved after 300 queries, while US and RBMAL
models required 500-600 queried data points.

These findings suggest that if NIDS alert data points are la-
beled one-by-one during the active learning process, QbC-CE
models might be the best choice. Also, since the performance
of QbC-CE was not found to be sensitive to the committee
size in our experimental setup, committees of small size (e.g.,
2-3) can be employed to reduce the computational resources
required for model training.

On the other hand, if the labeling task is divided among
several human experts, RBMAL models can be effectively
utilized with smaller batch sizes (e.g., 10-20). Finally, as we
have demonstrated, the use of RBMAL does not require the
development of an elaborate distance function to assess the
similarity between data points. Simple distance functions such
as the ones used in this paper (e.g., a trivial distance function
given by Eq. 9 in Section IV-D-3) can yield high-performance
models with lower training costs.

VI. LIMITATIONS AND FUTURE WORK

The NIDS alert classification approach proposed in this
paper is able to highlight NIDS alert data points of high
importance. However, in the case of DDoS attacks malicious
activities might trigger a large volume of NIDS alerts that
would normally be labelled as irrelevant by human analysts.
In this regard, one of the limitations of the method proposed in
this paper is its inability to detect an unexpected sharp increase
in the number of irrelevant alerts.

To address this issue, different approaches should be ap-
plied. For example, Viinikka et al. proposed the use of time
series analysis methods for that purpose [25]. As an example
of another solution for that issue, SEC event correlation engine
[30] with temporal attack detection rules can be used in SOC
environments [4].



TABLE VI
STATISTICAL COMPARISON OF CLASSIFIERS FOR DIFFERENT STRATEGIES (p− value)

Average Std. dev. Model US-90 QbC-CE-90 RBMAL-90 S-Over S-Under S-WRF US-trad
0.9701 0.0026 US-90
0.9699 0.0026 QbC-CE-90 0.9563
0.9663 0.0028 RBMAL-90 0.0012 0.0031
0.9267 0.0035 S-Over 1.91E-6 1.91E-6 1.91E-6
0.8524 0.0154 S-Under 1.91E-6 1.91E-6 1.91E-6 1.91E-6
0.9162 0.0046 S-WRF 1.91E-6 1.91E-6 1.91E-6 1.91E-6 1.91E-6
0.9124 0.0104 US-trad 1.91E-6 1.91E-6 1.91E-6 1.91E-6 1.91E-6 0.0399

� p− value > 0.10 – No evidence against H0; H0 is not rejected
� 0.01 < p− value < 0.05 – Moderate evidence against H0; H1 is accepted at 95% confidence level
� 0.001 < p− value < 0.01 – Strong evidence against H0; H1 is accepted at 99% confidence level
� p− value < 0.001 – Very strong evidence against H0; H1 is accepted at 99.9% confidence level

Another limitation of this paper is the use of a single
data set for all evaluations. The main reason behind this
limitation is the lack of publicly available data sets suitable
for such evaluations. For example, the recent and well-known
UNB2015 and CICIDS2017 network intrusion detection data
sets do not contain NIDS alert data. Besides, when we replayed
pcap network traffic from these data sets to our NIDS with
over 50,000 signatures, we observed only 22,631 and 13,709
NIDS alerts for UNB2015 and CICIDS2017, respectively.
Unfortunately, such a small amount of NIDS alerts does not
allow for a thorough evaluation of the NIDS alert classification
methods described in the present work. In contrast, the data set
used in this paper contains 11,598,649 NIDS alerts that were
aggregated into 1,395,324 data points. This also illustrates the
fact that NIDS alert classification is a distinct and challenging
research problem requiring data sets specifically designed for
this particular problem.

As for future work, we plan to extend the NIDS alert data set
to cover a significantly longer time frame (e.g., 1-2 years) to
study concept drift issues in NIDS alert classification. Another
future research direction is the investigation of attacks against
machine learning models in SOC environments. Finally, the
current work may be extended by studying the impact of
labeling mistakes on the active learning performance.
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Ivona Brajdić, ”Ranking Network Devices for Alarm Prioritisation:
Intrusion Detection Case Study,” 2021 International Conference on
Software, Telecommunications and Computer Networks, pp. 1–5.

[36] Thijs van Ede, Hojjat Aghakhani, Noah Spahn, Riccardo Bortolameotti,
Marco Cova, Andrea Continella, Maarten van Steen, Andreas Pe-
ter, Christopher Kruegel, and Giovanni Vigna, ”DEEPCASE: Semi-
Supervised Contextual Analysis of Security Events,” 2022 IEEE Sym-
posium on Security and Privacy, pp. 522–539.
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