

SEC – a Lightweight Event Correlation Tool

Risto Vaarandi

Copyright ©2002 IEEE.
Reprinted from Proceedings of the 2002 IEEE Workshop on IP Operations and Management.
(ISBN: 0-7803-7658-7)

This material is posted here with permission from IEEE. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be obtained from IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

SEC – a Lightweight Event Correlation Tool

Risto Vaarandi
Department of Computer Engineering

Tallinn Technical University
Tallinn, Estonia

risto.vaarandi@eyp.ee

Abstract—Event correlation has become one of the most

important techniques in today’s network management, and there
is a clear trend to extend its use to other application domains as
well. Unfortunately, existing event correlation systems are often
platform-dependent and heavyweight solutions that have
complicated design, being therefore difficult to deploy and
maintain, and requiring extensive user training. Their
complexity and size makes them often unfeasible to apply for
smaller networks and for smaller event correlation tasks. Also,
some systems are cumbersome to use outside the domain of
network fault management. In addition, commercial event
correlation products tend to be quite expensive. In this paper the
author presents a lightweight, open-source, and platform
independent tool for rule-based event correlation called SEC
(Simple Event Correlator), and describes its application
experience.

Keywords—event correlation

I. INTRODUCTION
Event correlation has become one of the most important

techniques in today’s network management. Without applying
this technique, the arrival rate of network events often
becomes too high for the human operator to follow the
changes in the network state. The employment of event
correlation allows one to reduce large amounts of network
events to smaller and more meaningful sets of alarm messages
that can be handled by the human operator in a timely manner.

Although currently event correlation has been mainly used
for network fault management, there is a clear trend to extend
its use to other application domains as well [1], most notably
to security management and intrusion detection. Staniford et
al. have implemented Spice event correlation engine for
detecting stealthy portscans [2], GrIDS [3] uses graph-based
event correlation for detecting intrusions, Snort [4] applies
event counting for detecting portscans, etc. Event correlation
could not only be used in the intrusion detection process itself,
but also as a postprocessing technique for IDS output, in order
to provide the human operator with a concise view of security
alarms.

Event correlation techniques have also been proposed for
system administration and logfile analysis. Some logfile
monitoring tools like Swatch [5] and Logsurfer [6] support a
few event correlation operations, but their event correlation
capabilities are nevertheless limited. A recent paper by Bing
and Erickson [7] points out the weaknesses of the current
logfile monitoring tools, and discusses the importance of

extending the logfile monitoring techniques with more
complex heuristic approaches, including event correlation.

Although event correlation systems that are currently
available on the market (like HP ECS [8], SMARTS [9], and
NerveCenter [10]) have been highly successful and are used
worldwide by many larger companies, they suffer from a
number of drawbacks.

Firstly, existing systems are often heavyweight solutions
that have complicated design and user interface. This means
that their deployment and maintenance is time-consuming, and
they require extensive user training. Also, their complexity
and size makes them often unfeasible to apply for smaller
networks and for smaller event correlation tasks, especially on
nodes with limited hardware capabilities (e.g., a logfile
monitoring and correlation on a workstation with small disk,
little memory, and weak CPU).

Secondly, since existing systems are mostly commercial,
they are platform-dependent - customers are supplied with
program binaries that run on a limited number of operating
systems. Furthermore, several commercial systems have been
designed for one particular network management platform
only. Some systems also suffer from the fact that they have
been designed specifically for network fault management, and
their application in other domains (e.g., logfile analysis) is
cumbersome.

Thirdly, existing systems tend to be quite expensive.
Therefore, many academic institutions and smaller companies
with more limited budget are unable to use them for daily
network management tasks or for research experiments. Since
a lot of research has been done in the field of event correlation
recently, some experimental correlation engine prototypes
have been created, but most such prototypes are not publicly
available on the Internet. Although many excellent open-
source network management solutions exist [11], there is no
freeware correlation engine available yet which would be
mature enough for use in a production environment. The
OpenNMS [12] team plans to implement MAJI correlation
engine after first versions of OpenNMS have been released,
but currently only the code specification of MAJI is available.
Another event correlation related open-source project is
CLIPS [13], which is an environment for creation of rule-
based expert systems. Although CLIPS itself is not an event
correlation tool, it has been successfully used for constructing
event correlation systems [1, 14].

For the reasons above, quite many sites are using
homegrown event correlation solutions, which often comprise

This work was supported by the Union Bank of Estonia and by Estonian
Science Foundation (Grant No. 4067).

of a few application-specific shell scripts. Each time a new
application is set up, a new solution has to be developed,
which is rather impractical and time-consuming.

In this paper the author presents an open-source platform
independent tool for rule-based event correlation called SEC
(Simple Event Correlator), and describes its application
experience. The first versions of SEC were applied for
network fault management [15], but by now SEC has evolved
into an event correlation tool that is used in other application
domains as well, such as intrusion detection, logfile
monitoring, fraud detection, etc. The primary design goal of
SEC was to fill the gap between homegrown and commercial
solutions, and to create a lightweight and easily customizable
tool that could be used for a wide variety of event correlation
tasks, either standalone or integrated with other applications.

II. SEC DESIGN
SEC is an open-source event correlation tool that uses

rule-based approach for processing events. Its main design
objectives were platform independence, lightweight build and
simple configuration, applicability for a wide variety of event
correlation tasks, and low consumption of system resources.

To achieve independence from operating system
platforms, the author decided to write SEC in Perl. Since Perl
runs on almost every operating system flavour and has
become a standard part of many OS distributons [16],
applications written in Perl are able to run on a wide range of
operating systems. In addition, Perl programs are almost as
fast as programs written in C.

SEC does not need much disk space and is very easy to
install, since its current size is only about 160KB, and its
configuration is stored in regular text files that require only
few kilobytes more. Also, since SEC is written entirely in
Perl, it can be used instantly after its source distribution has
been unpacked, without any additional preparations (such as
compiling and linking the source).

SEC receives its input events from a file stream, and
produces output events by executing user-specified shell
commands. Regular files, named pipes, and standard input are
currently supported as input, allowing one to use SEC with
any application that is able to write its output to a file stream.
Applications that have an event management API can also be
integrated through simple plugins that employ API calls to
read the application’s event stream, and copy it to the standard
output or file (a sample plugin for HP OpenView ITO is part
of the SEC package).

To be able to handle input events regardless of their
format, SEC uses regular expression language for recognizing
them. That eases the configuration of SEC, since many UNIX
tools (like grep, sed, find, etc.) are relying on regular
expressions, and therefore most system and network
administrators are already familiar with the regular expression
language.

SEC configuration is stored in text files which can be
created and modified with any text editor. Each configuration
file contains one or more rules, and rulesets from different
files are applied logically in parallel. In addition to event

matching condition, most rule definitions specify a list of
actions, and optionally a Boolean expression of contexts. The
SEC contexts represent the knowledge that SEC has learned
during the event correlation process, with each context having
a certain lifetime (either finite or infinite). Contexts can be
used for activating and deactivating rules dynamically at
runtime, e.g., if a rule definition has (X OR Y) specified for its
context expression and both context X and context Y don’t
exist at a given moment, the rule will not be applied. Another
important function of the SEC contexts is to act as event stores
– events of interest can be associated with a context, and all
the collected events supplied for an external processing at a
later time.

Currently, SEC supports the following rules types:
• Single – match input event and execute an action list.
• SingleWithScript - match input event and execute an

action list, if an external script or program (e.g., query
to a network topology database) returns certain exit
value. The external script or program will be supplied
with the names of existing contexts through its
standard input.

• SingleWithSuppress - match input event and execute
an action list, but ignore following matching events
for the next t seconds.

• Pair - match input event, execute an action list
immediately, and during the next t seconds ignore
following matching events until some other input
event arrives. On the arrival of the second event
execute another action list.

• PairWithWindow - match input event and wait for t
seconds for other input event to arrive. If that event is
not observed within the given time window, execute
an action list. If the event arrives on time, execute
another action list.

• SingleWithThreshold - count matching input events in
the window of t seconds and if a given threshold n is
exceeded, execute an action list. The window is
sliding.

• SingleWith2Thresholds - count matching input events
during t seconds and if a given threshold n is
exceeded, execute an action list. The counting
continues after the execution - when no more than n’
events have been observed during the last t’ seconds,
another action list will be executed. Both event
correlation windows are sliding.

• Suppress - suppress matching input event.
• Calendar - execute an action list at specific times.
SEC actions were not only designed for generating output

events, but also for making rules to interact, for storing and
managing knowledge, and for connecting external fault or
knowledge analysis modules to SEC. The following actions
are currently supported:

• none – no action
• logonly – log a message

• write – write a line to a file or a named pipe
• shellcmd – execute an external shell script or program
• pipe – execute an external shell script or program, and

feed data to its standard input
• spawn – execute an external shell script or program

that will provide SEC with additional input events
(e.g., run tail –f on a file, start a SEC subdaemon for
topology-based event correlation, etc.)

• create – create a context, and optionally set some of
its parameters (e.g., lifetime) to non-default values

• set – set the parameters of a context to new values
• delete – delete a context
• add – associate an event with a context
• report – supply all events of a given context for an

external processing
• event – generate a new input event that can be

matched by other rules
• reset – cancel an event correlation operation (e.g.,

reset ongoing event counting)
By combining several rules with appropriate action lists

and context expressions, more complex event correlation
schemes can be defined. Fig. 1 presents a SEC ruleset
example.

When a SEC rule matches an input event, SEC either starts
a new event correlation operation for the recognized event, or
lets the event be correlated by some event correlation
operation that is already running. When SEC starts an event
correlation operation that can’t be completed immediately
(e.g., the operation involves correlation over a time window),
it stores the operation in its working memory. The other
entities kept in the working memory include rules, contexts,
data about running child processes, etc. Most SEC internal
data structures are implemented as Perl hashes, which can be
searched rapidly, even when the hash is very large.

Fig. 2 depicts the work of a sample SEC ruleset. If input
event “Interface X at node Y down” has been observed and no
interface up input event will be received for the same interface
within 15 seconds, event “DOWN_X@Y” will be generated;
otherwise event “BOUNCE_X@Y” will be generated. When
event “DOWN_X@Y” has been observed, output event “X@Y
down” is produced; when input event “Interface X at node Y
up” arrives subsequently, output event “X@Y up” will be
produced. When event “BOUNCE_X@Y” is received, a
counting operation is started for the event; also, an external
fault analysis module is spawned that monitors the interface X
for line-level faults during 1 hour. If the analysis module
detects a line-level error, the counting operation is cancelled
and output event “X@Y line fault” is produced. Also, the
context LINE_ERR_X@Y will be set up for the next 5 hours,
in order to avoid possible repeated “X@Y line fault” output
events. If the analysis module does not detect a line-level
error, the counting operation is allowed to continue, and if 10
“BOUNCE_X@Y” events have been observed in the window
of 6 hours, output event “X@Y unstable” is produced.

Figure 1. An example ruleset for Cisco router syslog-messages.

III. SEC PERFORMANCE AND APPLICATION EXPERIENCE
SEC has modest memory and CPU time requirements, and

can therefore be installed even on older workstations (it has
been successfully used on Linux nodes with Intel 80486
processors and 16MB of memory). Even when hundreds of
event correlation operations and hundreds of contexts are
simultaneously active and stored in the SEC working memory,
the program consumes less than 5MB of memory on most
architectures (depending on the OS platform, the code part
takes about 3-4MB of it). In a recently conducted experiment,
SEC was installed on a 1GHz PIII server, with the SEC
rulebase containing 57 rules. The experiment lasted for about
17.5 days (1523599 seconds), with 47.5 input events arriving
per second as an average. 9.2% of the 72390360 input events
were found matching and were correlated. During the
experiment, SEC consumed 4.7% of the CPU time.

If a router interface is in down state for less
than 15 seconds, generate event
"<router> INTERFACE <interface> SHORT OUTAGE";
otherwise generate event
"<router> INTERFACE <interface> DOWN".

type=PairWithWindow
ptype=RegExp
pattern=(\S+) \d+: %LINK-3-UPDOWN: Interface (.+), changed
 state to down
desc=$1 INTERFACE $2 DOWN
action=event %s
ptype2=RegExp
pattern2=($1) \d+: %LINK-3-UPDOWN: Interface ($2), changed
 state to up
desc2=$1 INTERFACE $2 SHORT OUTAGE
action2=event %s
window=15

If "<router> INTERFACE <interface> DOWN" event is
received from the previous rule, send a notification and
wait for "interface up" event for the next 24 hours.

type=Pair
ptype=RegExp
pattern=(\S+) INTERFACE (\S+) DOWN
desc=$1 interface $2 is down
action=shellcmd notify.sh "%s"
ptype2=RegExp
pattern2=($1) \d+: %LINK-3-UPDOWN: Interface ($2), changed
 state to up
desc2=$1 interface $2 is up
action2=shellcmd notify.sh "%s"
window=86400

If ten "short outage" events from the first rule have been
observed in the window of 6 hours, send a notification.

type=SingleWithThreshold
ptype=RegExp
pattern=(\S+) INTERFACE (\S+) SHORT OUTAGE
desc=Interface $2 at node $1 is unstable
action=shellcmd notify.sh "%s"
window=21600
thresh=10

The author has received feedback from more than 30
companies and individuals. Table I presents the results of a

recent survey among some companies that are employing
SEC.

Figure 2. The work of a sample SEC ruleset (input events are depicted as dashed arrows and output events as bold arrows; circles represent event correlation
operations and the dashed circle represents an external fault analysis module; regular arrows represent SEC actions).

TABLE I. THE RESULTS OF THE SEC USER SURVEY.

Type of the
company

Location Description of the
managed network

How SEC is applied Advantages of SEC over other
event correlation systems

Banking card
authorization
center

Europe 30 servers, routers, and
firewalls

Event correlation engine for NMS and
IDS, logfile monitoring and system
monitoring. An important application
of SEC is fraud detection.

Straightforward, easy, and
transparent configuration and rule
definition system.

Technology-
based
marketing
agency

US 600 nodes across US
and UK

Gather and correlate service issues
from Cisco CSS content switches.

Power and control in the amount
you choose.

Financial
institution

US 6000 workstations, 400
servers, 350 switches,
250 routers (distributed
over US plus 5 other
countries)

Used as a central event correlation
engine for HP OpenView NNM. Also
used for central monitoring of syslog-
messages from Cisco devices.

More flexible and customizable
than other event correlation
systems.

Retail sales of
consumer
electronics

US 8000 managed nodes;
the company WAN
covers continental US,
Alaska, Hawaii, and US
territories

Network management with HP
OpenView, logfile monitoring,
dynamic webpage generation, etc.

SEC provides a low cost and
efficient method to plug in event
correlation and event management
into HP OpenView.

Telecommuni-
cations Carrier/
Provider

US One of the largest
international networks
in the world

Logfile monitoring (collect and
interpret alarms at call centers, and
send a notification to a national
support team).

Good level of control over
monitoring triggers.

Network
consulting

Global (more
than 30 offices
in US, Europe,
and Asia)

SEC is used in the US
network of a major
European car manu-
facturer (100 routers,
300 switches)

Used as a correlation engine for Cisco
DFM platform and for Snort IDS.

Provides event correlation without
significant programming resources,
runs on multiple platforms,
integrates well with external
scripting languages.

Software
development,
IT consulting
and services

Global (offices
in Europe, US,
Asia, Australia,
South-America)

Global network, spread
worldwide across the
globe

Used as a prototype for event
correlation experiments.

Free download status.

shellcmd notify.sh
“X@Y unstable”

Interface X
at node Y down

event BOUNCE_X@Y create LINE_ERR_X@Y
(lifetime 5 hours)

shellcmd notify.sh
“X@Y line fault”

event DOWN_X@Y

reset

spawn event LINE_ERR_X@YInterface X at node Y up

shellcmd notify.sh “X@Y down” shellcmd notify.sh “X@Y up”

PairWithWindow
window=15 sec

Pair

Single
cond=

NOT(LINE_ERR_X@Y)

SingleWithThreshold
cond=NOT(LINE_ERR_X@Y)

window=6 hours
threshold=10

monitor SNMP
ifInErrors variable

for 60 minutes

Single

SEC has been used on a variety of OS platforms, like
Linux, Solaris, HP-UX, AIX, FreeBSD, Tru64 UNIX, and
Windows2000. It has been applied in various domains, like
network fault and performance management, intrusion
detection, logfile monitoring and analysis, and fraud detection.
It has also been used for academic research [17]. Applications
that SEC has been integrated with include HP OpenView
Network Node Manager, HP OpenView ITO (both
management server and agents), CiscoWorks, and Snort IDS.
Equipment managed by SEC ranges from servers, routers, and
switches to cable modem devices.

IV. AVAILABILITY INFORMATION
SEC was released on March 23, 2001, and is distributed

under the terms of GNU General Public License. Its main
download page is located at http://kodu.neti.ee/~risto/sec/, and
since March 2002 a mirror page at
http://simple-evcorr.sourceforge.net is also available.

The SEC users mailing list can be joined at
https://lists.sourceforge.net/lists/listinfo/simple-evcorr-users/.

V. FUTURE WORK
For a future work, the author plans to create a public rule

library for applications and devices managed with SEC (i.e.,
standard rulesets for Snort, Cisco devices, etc.), and to include
support for distributed event correlation in SEC.

Also, the author plans to extend SEC with fault analysis
modules that employ various AI techniques, and to use SEC in
experiments together with expert system shells and data
mining tools.

ACKNOWLEDGMENTS
The author thanks all the people who have provided

feedback about SEC, and all the companies that participated in
the SEC user survey.

The author expresses his gratitude to Al Sorrell, James
Brown, John P. Rouillard, Jon Frazier, Mark D. Nagel, and
Rick Casey, who have supplied software patches and
documentation updates.

Also, the author wishes to thank CIO Mr. Tõnu Liik, CTO
Dr. Paul Leis, and DSO Mr. Kaido Raiend from the Union
Bank of Estonia for their kind support.

REFERENCES
[1] G. Jakobson, M. Weissman, L. Brenner, C. Lafond, C. Matheus,

“GRACE: Building Next Generation Event Correlation Services”,
Proceedings of the 7th Network Operations and Management
Symposium, pp. 701-714, April 2000.

[2] Stuart Staniford, James A. Hoagland, Joseph A. McAlerney, “Practical
Automated Detection of Stealthy Portscans”, in press (to appear in the
Journal of Computer Security).

[3] S. Staniford-Chen et al., “GrIDS – A Graph-Based Intrusion Detection
System for Large Networks”, Proceedings of the 19th National
Information Systems Security Conference, pp. 361-370, October 1996.

[4] Martin Roesch, “Snort – Lightweight Intrusion Detection for Networks”,
Proceedings of USENIX 13th System Administration Conference, pp.
229-238, November 1999.

[5] Stephen E. Hansen and E. Todd Atkins, “Automated System Monitoring
and Notification With Swatch”, Proceedings of USENIX 7th System
Administration Conference, pp. 145-152, November 1993.

[6] Wolfgang Ley and Uwe Ellerman, logsurfer(1) and logsurfer.conf(4)
manual pages, unpublished (see http://www.cert.dfn.de/eng/logsurf/).

[7] Matt Bing and Carl Erickson, “Extending UNIX System Logging with
SHARP”, Proceedings of USENIX 14th System Administration
Conference, pp. 101-108, December 2000.

[8] Hewlett-Packard Company, Event Correlation Services – Designer’s
Guide, HP document J1095-90304, 1998.

[9] SMARTS, http://www.smarts.com.
[10] NerveCenter, http://www.open.com/htm/nervecenter.htm
[11] Shane O’Donnell, “Network Management: Open Source Solutions to

Proprietary Problems”, Proceedings of the 28th SIGUCCS Conference
on User Services, pp. 208-217, October 2000.

[12] OpenNMS, http://www.opennms.org.
[13] CLIPS, http://www.ghg.net/clips/CLIPS.html.
[14] G. Jakobson and M. Weissman, “Real-time telecommunication network

management: Extending event correlation with temporal constraints”,
Proceedings of the 4th International Symposium on Integrated Network
Management, pp. 290-301, May 1995.

[15] Risto Vaarandi, “Platform Independent Event Correlation Tool for
Network Management”, Proceedings of the 8th Network Operations and
Management Symposium, pp. 907-909, April 2002.

[16] Peter Wainwright et al., Professional Perl Programming, Birmingham,
UK, Wrox Press Ltd., 2001.

[17] Hugh R. Casey, The Simple Event Monitor, A Tool for Network
Management, MSc thesis, University of Colorado, 2002.

