
Security Event Processing 
with Simple Event Correlator
By Risto Vaarandi and Michael R. Grimaila – ISSA member, Dayton, USA Chapter

This paper focuses on Simple Event Correlator – a lightweight event correlator written by one 
of the authors which is based on different design principles than commercial solutions. We will 
present an overview of SEC and discuss some real-life event correlation scenarios which highlight 
its capabilities.

2. If N events “Link Short Outage” have been seen for a link 
within T2 seconds (e.g., N=3 and T2=3600), send an 
alarm to human operator about the degrading quality of 
this link.

This sample scheme illustrates three important aspects of 
event correlation. First, one of the main purposes of event 
correlation is to reduce large volumes of input events to a 
smaller set of more meaningful output events in real time. 
Second, some results from event correlation might not be re-
ported as output, but rather treated as intermediate knowl-
edge, which is used for further knowledge deriving inside the 
correlator (e.g., “Link Short Outage” events from the above 
example). Third, event correlation is not only about process-
ing existing events, but it is equally important to detect that 
events do not appear when expected (e.g., no linkUp will oc-
cur after linkDown). It should also be noted that instead of 
producing an output alarm for a human, the event correlator 
might take another kind of action for output (e.g., reboot a 
network device).

Today, event correlation is not only used for network manage-
ment, but it is employed in many other domains, including 
Security Information and Event Management (SIEM). SIEM 
encompasses all of the activities surrounding the collection, 
logging, and analysis of system and application events to iden-
tify potentially malicious activities and system errors (Swift, 
2006).  Most SIEM products intrinsically support event cor-
relation, although the set of features and performance could 
vary significantly. Unfortunately, today’s commercial event 
correlation solutions are often part of a larger event manage-
ment framework (e.g., HP OpenView, Tivoli, ArcSight, RSA 
enVision). Therefore, their deployment requires a substan-

I n the early days of computer management, event logs 
were primarily used for diagnosing when an applica-
tion or device stopped functioning properly. Event logs 

provided visibility of the internal state of the program or 
system to aid in debugging (Sah, 2002). In 1980, Anderson 
(1980) recognized the value of post-processing event logs to 
detect unauthorized access to files. Event correlation rose 
into prominence in early 1990s when it was employed for 
real-time processing of large volumes of network events to 
provide the human operator with a concise picture of cur-
rent fault conditions present in the network (Grimaila et al., 
2011). Event correlation provides the capability for real-time 
interpretation of an event stream where a new meaning is as-
signed to a group of events which occur in a predefined time 
window (Jakobson and Weissman, 1995). 

For example, event correlation has been used for making 
sense of router linkDown and linkUp SNMP traps. In many 
networks most linkDown traps are immediately followed by 
linkUp, representing a very short network link outage. After 
such accidental outage has been seen, the link could oper-
ate flawlessly for many months. In large networks, thousands 
of linkDown traps might arrive from routers in a short time 
frame, with only a few of them manifesting hard errors which 
require human intervention. In order to detect relevant in-
formation from large volumes of such traps, many ISPs em-
ploy the following event correlation scheme: 

1. If linkDown for a link is not followed by linkUp for this 
link within T1 seconds (e.g., T1=10), send an alarm to hu-
man operator about the broken link; otherwise generate 
an artificial event “Link Short Outage” inside the event 
correlator.

30 – ISSA Journal | August 2012

ISSA  
DEVELOPING AND CONNECTING 

CYBERSECURITY LEADERS GLOBALLY



tial investment and the installation of the whole framework 
which is costly, complex, and a time-consuming procedure. 

In this paper, we will focus on Simple Event Correlator 
(SEC) – a lightweight event correlator written by one of the 
authors, which is based on different design principles than 
commercial solutions. Unlike most other products, SEC is 
not a part of a heavyweight and expensive event manage-
ment framework, but is rather an open-source UNIX tool 
which can be easily integrated into any setup. During the last 
decade, SEC has been used for a wide variety of purposes, 
including network fault management, processing of various 
security events (e.g., IDS and firewall messages), system and 
application monitoring, and fraud detection (Becklehimer et 
al., 2007; Grimaila et al., 2011; Myers et al., 2011; Rouillard, 
2004; Vaarandi 2006; Vaarandi and Podins, 2010). In the re-
mainder of this paper, we will present an overview of SEC 
and discuss some real-life event correlation scenarios which 
highlight its capabilities.

Overview of SEC
Simple Event Correlator1 (SEC) is a compact tool for accom-
plishing various event correlation tasks. It runs as a single 
process, requires no graphical environment, and has moder-
ate CPU and memory consumption. It is written in Perl and 
works on any UNIX platform with standard Perl distribu-
tion, without dependencies on any other software (e.g., non-
standard Perl modules or other UNIX utilities). It has also 
been used on Windows systems, but requires the addition of 
ActivePERL (Active State, 2012) or CygWin Perl (CygWin, 
2012). Although you can install SEC from source tarball in 
a straightforward way, it has been packaged for several major 
Linux and BSD distributions, and can thus be also installed 
from standard software repository on these platforms. 

SEC accepts its input from one or more log files, and can pro-
duce its output by executing custom command lines, writing 
to files, and by various other means. Event correlation con-
figuration is specified as rules which are stored in text files. 
Rules are applied to input events in the order they are defined 
in the configuration file. If there are two or more configura-
tion files, rule sequences from all files are applied to input 
(unless explicitly specified otherwise). Most rule definitions 
can have the following parts:

•	 Event matching pattern

•	 Boolean context expression

•	 Operation description string

•	 Event correlation information (e.g., size of event cor-
relation window) 

•	 Action(s) for producing output (e.g., output events or 
intermediate knowledge)

Regular expressions, search strings, custom Perl subrou-
tines, and truth values can be employed for event matching 
patterns. In addition, results from pattern matching can be 

1 Simple Event Correlator – http://simple-evcorr.sourceforge.net.

ISSA Members Receive a 50% 
Discount on Information Security 
Related Books
ISSA has arranged for a 50% discount on Auerbach 
Publications and CRC Press information security 
books. Choose from hundreds of books on a variety of 
subject! Visit the Special Offers tab for details on this 
and other great offers (member login required).  Titles 
include:

K13375 Managing the Insider 
Threat: No Dark Corners 
An adversary who attacks an organization 
from within can prove fatal to the organi-
zation and is generally impervious to con-
ventional defenses. The first comprehensive 
resource to use social science research to 
explain why traditional methods fail against 
these trust betrayers, this groundbreaking book identifies new 
management, security, and workplace strategies for categoriz-
ing and defeating insider threats. Each chapter offers questions 
to stimulate discussion and exercises or problems suitable for 
team projects. This practical text enables those charged with 
protecting an organization from internal threats to stop these 
predators before they jeopardize the workplace and sabotage 
business operations.

K13576 Electronically Stored Information: The 
Complete Guide to Management, Understand-
ing, Acquisition, Storage, Search, 
and Retrieval 
Using easy-to-understand language, the 
book explains exactly what electronic infor-
mation is, the different ways it can be stored, 
why we need to manage it from a legal and 
organizational perspective, who is likely to 
control it, and how it can and should be ac-
quired to meet legal and managerial goals. Its 
reader-friendly format means you can read it 
cover to cover or use it as a reference where you can go straight 
to the information you need. Complete with links and references 
to additional information, technical software solutions, helpful 
forms, and time-saving guides, it provides you with the tools to 
manage the increasingly complex world of electronic informa-
tion that permeates every part of our world.

K10743 The 7 Qualities of Highly 
Secure Software
Providing a framework for designing, devel-
oping, and deploying hack-resilient software, 
this book uses engaging anecdotes and anal-
ogies—from Aesop’s fables and athletics to 
architecture and video games—to illustrate 
the qualities needed for the development of 
highly secure software. Each chapter details 
one of the seven qualities that make software 
less susceptible to hacker threats. Filled with real-world exam-
ples, the book explains complex security concepts in language 
that’s easy to understand to supply readers with the under-
standing needed to building secure software.

August 2012 | ISSA Journal – 31

Security Event Processing with Simple Event Correlator | Risto Vaarandi and Michael R. Grimaila

http://simple-evcorr.sourceforge.net
https://www.issa.org/?page=SpecialOffers


cached, in order to reuse them at later rules. All SEC patterns 
can be extended for multi-line matching, in order to monitor 
log files with messages spanning over several lines. When an 
input event matches a rule, SEC will check if there is already 
an event correlation operation running for this event (opera-
tion description string is used for identifying the operation). 
If the operation exists, it will receive the event for correlation; 
otherwise, SEC will start a new operation which will then get 
the event. A rule could start many operations that are run-
ning simultaneously, while each operation has only one par-
ent rule that started it.

In the following sections we will have a look into some real-
life event correlation scenarios.

Monitoring SSH login failures and blocking 
suspicious hosts
In this section, we will consider the monitoring of SSH login 
failures on a Linux platform, and blocking hosts from which 
a number of failed login attempts have been seen in a short 
time frame. Most commonly used Linux distributions are 
using the OpenSSH server which normally logs its events 
through the syslog daemon. 

The following example is a successful login event for user 
risto with a public key authentication, with the connection 
coming from 10.16.18.20 :

Jun 15 16:17:57 myhost sshd[2891]: Accepted 
publickey for risto from 10.16.18.20 port 
42174 ssh2

The following example depicts a password login failure event 
for user risto, with the login attempt coming from 10.16.96.31:

Jun 15 16:18:25 myhost sshd[2899]: Failed 
password for risto from 10.16.96.31 port 
12801 ssh2

If a username is tried, which is not present in the local user 
base, the event looks slightly different from the regular login 
failure. The following example represents a password login 
attempt from host 10.16.18.21 for the non-existing user bob:

Jun 15 17:02:02 myhost sshd[3046]: Failed 
password for invalid user bob from 
10.16.18.21 port 43183 ssh2

If the local syslog daemon logs the above events to /var/log/
secure, SEC could be started with the following command 
line for correlating them:

/usr/bin/sec --conf=/etc/sec/ssh-login-
failure.rules --input=/var/log/secure --log=/
var/log/sec --detach

The --conf option tells SEC to read correlation rules from /
etc/sec/ssh-login-failure.rules and to open /var/log/
secure at the end-of-file, in order to process all lines which 
will be appended to the log. The --log option specifies the 
location of SEC’s own log and --detach switches SEC into 
daemon mode. Suppose the file /etc/sec/ssh-login-fail-
ure.rules contains the following three rules (see figure 1).

The PairWithWindow rule matches any SSH login failure for 
a valid username with the regular expression sshd\[\d+\]: 
Failed \S+ for (\S+) from ([\d.]+) port \d+ ssh2, and 
sets $1 match variable to username and $2 to the IP address 
of remote host. For the sample login failure event above, $1 
would be set to risto and $2 to 10.36.96.31. After that, the 
operation description string given with the ‘desc’ field is eval-

type=PairWithWindow 
ptype=RegExp 
pattern=sshd\[\d+\]: Failed \S+ for (\S+) from ([\d.]+) port \d+ ssh2 
desc=User $1 has been unable to log in from $2 over SSH during 30s 
action=event SSH_LOGIN_FAILURE_USER_$1_HOST_$2 
ptype2=RegExp 
pattern2=sshd\[\d+\]: Accepted \S+ for $1 from $2 port \d+ ssh2 
desc2=SSH login successful for %1 from %2 after initial failure 
action2=logonly 
window=30 

type=Single 
ptype=RegExp 
pattern=sshd\[\d+\]: Failed \S+ for invalid user (\S+) from ([\d.]+) port \d+ ssh2 
desc=Login attempt for invalid user $1 from $2 over SSH 
action=event SSH_LOGIN_FAILURE_USER_$1_HOST_$2 

type=SingleWithThreshold 
ptype=RegExp 
pattern=SSH_LOGIN_FAILURE_USER_\S+_HOST_([\d.]+) 
context=!NETFILTER_IP_$1_BLOCKED 
desc=Repeated user probing from host $1 
action=shellcmd /sbin/iptables -I INPUT -s $1 -j DROP; \  

create NETFILTER_IP_$1_BLOCKED 300 shellcmd /sbin/iptables -D INPUT -s $1 -j DROP
window=120 
thresh=3 

Rule 1 – Monitoring SSH login failures and blocking suspicious hosts

32 – ISSA Journal | August 2012

Security Event Processing with Simple Event Correlator | Risto Vaarandi and Michael R. Grimaila



uated, which yields User risto has been unable to log in from 
10.36.96.31 over SSH during 30s. This string is used for build-
ing the operation ID, which also contains the rule file name 
(/etc/sec/ssh-login-failure.rules) and the rule number 
(0, since the rule is the first rule in the file). The presence of 
the rule file name and rule number in the ID ensures that op-
erations from different rules will never clash. Also, since the 
operation description string contains both the username and 
IP address, a separate PairWithWindow operation is started 
for each distinct username-IPaddress pair.

Each PairWithWindow operation will run for 30 seconds and 
wait for an event which would match a regular expression 
given with the ‘pattern2’ field. All match variables within 
‘pattern2’ will be replaced with their values for the given 
operation, yielding sshd\[\d+\]: Accepted \S+ for risto 
from 10\.36\.96\.31 port \d+ ssh2 for the example event. 
Note that special symbols in variable values (e.g., dots in IP 
addresses) are escaped with backslash before substitution. In 
other words, the operation expects the successful login event 
for user risto from 10.36.96.31 during the next 30 seconds. If 
other login failure events are seen for the same username and 
IP address within this time frame, they are silently consumed 
by the operation. 

If the successful login event appears within 30 seconds and is 
matched by the above regular expression, the operation will 
evaluate the ‘desc2’ field, which yields SSH login success-
ful for risto from 10.36.96.31 after initial failure (%1 and %2 
match variables hold the values from the first regular expres-
sion match). Then the logonly action given with ‘action2’ 
field is executed which writes the string SSH login successful 
for risto from 10.36.96.31 after initial failure into SEC’s own log 
/var/log/sec for debugging purposes.

If the successful login event does not appear within 30 sec-
onds after the failure, the operation executes the event ac-
tion, given with the ‘action’ field. For example login failure 
scenario for risto from 10.36.96.31, the action produces a new 
event SSH_LOGIN_FAILURE_USER_risto_HOST_10.36.96.31, 
which is treated like a line read from /var/log/secure. This 
so-called synthetic event represents the fact that a login fail-
ure condition has not been quickly resolved, and we are not 
dealing with an accidental error (e.g., one-time typo in a 
password).

This event will match the regular expression of the Single-
WithThreshold rule which implements counting for such 
events. Note that some field definitions of this rule span over 
several lines, with a backslash at the end of line continuing 
the field definition in the next line. Since the ‘desc’ field 
of this rule contains the $1 match variable which holds the 
IP address from matching events, a separate counting op-
eration is started for each distinct IP address. If three events 
(the value of the ‘thresh’ field) have been seen during 120 
seconds (the value of the ‘window’ field) for the same IP, 
the operation executes an action list given with the ‘action’ 
field. After the execution, the operation consumes further 
matching events without further action until the event cor-

relation window expires. The event correlation window of the 
SingleWithThreshold operation is sliding – if less than three 
matching events have been observed during 120 seconds, the 
beginning of the window is moved forward in order to drop 
events older than 120 seconds. If no events remain in the win-
dow after sliding, the operation terminates silently.

The ‘action’ field specifies a list of shellcmd and create ac-
tions separated with a semicolon. If three non-accidental log-
in failures have been seen from 10.36.96.31 within 2 minutes, 
shellcmd forks a separate process for executing commandline 
/sbin/iptables -I INPUT -s 10.36.96.31 -j DROP. This 
adds a rule to local Netfilter firewall for blocking all further 
network traffic from 10.36.96.31. In order to avoid blocking 
the host forever and prevent firewall rule duplicates, a con-
text NETFILTER_IP_10.36.96.31_BLOCKED is created with the 
create action. This context represents the fact that the given 
IP address is currently blocked by the local firewall. Unlike 
synthetic events, the contexts do not match regular expres-
sions, but their presence can rather be checked from Bool-
ean context expressions. In the case of the above example, 
the SingleWithThreshold rule is implementing this with the 
‘context’ field, verifying that the context does not exist for 
the IP address that was obtained from the regular expression 
match (the ! operator denotes logical NOT). If the context is 
there, the rule is not considered matching, despite the regular 
expression match. Therefore, this rule is essentially disabling 
itself for IP addresses which have been already blocked.

Apart from the context name, the create action has two ad-
ditional parameters – the context lifetime (300 seconds) and 
the action list which should be executed when the context ex-
pires. In the case of our example, the command line /sbin/
iptables -D INPUT -s 10.36.96.31 -j DROP is executed 
when NETFILTER_IP_10.36.96.31_BLOCKED context expires, 
which removes the blocking rule for host 10.36.96.31. In other 
words, offending hosts are blocked for 5 minutes only.

Finally, the task of the Single rule is to react to login failures 
for non-existing users, and immediately create input events 
for the following SingleWithThreshold rule, since no success-
ful login event can follow the failure for non-existing user. 
Note that unlike other two rules, Single does not start an 
event correlation operation, but rather executes an action im-
mediately.

Cross-correlating offending events from Netfilter, 
SSH, and Apache logs
Some probing activities against the system are visible in 
several logs; for example, there could be entries both in the 
firewall and application logs. Also, apart from coming from 
different sources and having a different format, these events 
often occur in arbitrary order, which further complicates 
their correlation. In this section, we will discuss an example 
for detecting an unordered group of simultaneous offending 
events from the Netfilter firewall, OpenSSH daemon, and 
Apache web server on a Linux platform. Suppose we want to 
detect SSH login failure events described in the previous sec-

August 2012 | ISSA Journal – 33

Security Event Processing with Simple Event Correlator | Risto Vaarandi and Michael R. Grimaila



tion, but also invalid web page requests from Apache access 
logs with error codes 4xx. The following example event from 
/var/log/httpd/access_log represents a request for a non-
existing URL /aaa.cgi which produces error code 404:

10.1.6.22 - - [21/Jun/2012:16:02:04 +0300] “GET 
/aaa.cgi HTTP/1.1” 404 285 “-” “Mozilla/5.0 
(X11; U; Linux x86_64; en-US; rv:1.9.2.24) 
Gecko/20111108 Fedora/3.6.24-1.fc14 
Firefox/3.6.24”

Also, suppose the local Netfilter firewall has been configured 
to log a syslog event for each blocked packet. For example, the 
following event from /var/log/messages depicts a blocked 
access from 10.26.96.19 to the local mail server (port 25/tcp):

Jun 21 16:42:57 myhost kernel: IN=eth0 OUT= 
MAC=xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx 
SRC=10.26.96.19 DST=10.1.6.22 LEN=60 TOS=0x00 
PREC=0x00 TTL=63 ID=15040 DF PROTO=TCP 
SPT=40217 DPT=25 WINDOW=5840 RES=0x00 SYN 
URGP=0

In order to monitor these events, SEC could be started with 
the following commandline:

/usr/bin/sec --conf=/etc/sec/cross-corr.
rules --input=/var/log/messages --input=/var/
log/secure --input=/var/log/httpd/access_log 
--detach

Suppose the /etc/sec/cross-corr.rules contains the following 
rule (see figure 2).

This rule implements cross-correlation for three different 
event types within the common window of 120 seconds. 
Events are matched with three different regular expressions, 
while each expression extracts the IP address of offending 
host from the matching event and assigns it to $1 match 
variable. Since the ‘desc’ field of the rule contains $1, for 
each offending host a separate event correlation operation 
is started. The regular expression given with the ‘pattern’ 
field matches SSH login failures and the ‘thresh’ field sets a 
threshold for these events to 3. The expression given with the 
‘pattern2’ field matches Apache access log 4xx error mes-
sages with threshold 1. Finally, the ‘pattern3’ defines an 
expression for Netfilter firewall events with threshold 5. Each 
running operation expects matching events for one IP ad-
dress, and maintains three counters for aforementioned three 
event types. After the arrival of each event, the relevant coun-

ter is incremented and three threshold conditions are evalu-
ated. If all conditions are satisfied, a warning email with a 
text ‘Repeated probing from host X’ is sent to the local root-
user with the pipe action, which executes /bin/mail utility 
and feeds the text to its standard input. Note that like with 
the SingleWithThreshold example from previous section, the 
operation silently consumes further matching events for host 
X after the output action has been triggered for X. Also, if 
threshold conditions have not been met after 120 seconds, 
the event correlation window will slide forward.

Integrating Perl code into SEC rules for custom 
Netfilter event correlation
Although existing event correlation products allow for tack-
ling a wide variety of event processing tasks, sometimes 
standard features of the product come short and external 
shell scripts or programs have to be integrated into event 
correlation schemes. Unfortunately, invoking external tools 
involves the creation of new processes which can be costly 
if external tools are used very frequently. Furthermore, it is 
often not easy to share data between the event correlation 
engine and another process.

Fortunately, SEC not only supports the use of external tools, 
but also the employment of custom Perl code in several flex-
ible ways. First, the user can include Perl code snippets (e.g., 
a condition ‘$1 < 1024’) in rule definitions which are com-
piled before each execution. Furthermore, the user can en-
close custom code into Perl functions which are compiled 
once at SEC startup. During SEC runtime, compiled func-
tions are invoked through code pointers, and custom data 
can be passed to functions through input parameters. It is 
important to note that such compiled functions are run-
ning at the speed of SEC itself and they can share custom 
data structures of arbitrary complexity. The user can employ 
these functions as event  matching patterns, as operands of 
context expressions, and also as actions for efficiently ex-
tending the power of SEC rules.

The following example rule set has been defined for correlat-
ing Netfilter firewall events. The purpose of this rule set is 
to send a warning email to the local root-user if within 60 
seconds a host has probed either 10 distinct privileged ports, 

type=EventGroup3 
ptype=RegExp 
pattern=sshd\[\d+\]: Failed \S+ for (?:invalid user )?\S+ from ([\d.]+) port \d+ ssh2 
thresh=3 
ptype2=RegExp 
pattern2= (̂[\d.]+) \S+ \S+ \[[̂ ]]+\] “[̂ ”]+ HTTP\/[\d.]+” 4\d+ \d+ 
thresh2=1 
ptype3=RegExp 
pattern3=kernel: IN=\S+ OUT= MAC=\S+ SRC=([\d.]+) 
thresh3=5 
desc=Repeated probing from $1 
action=pipe ‘Repeated probing from host $1’ /bin/mail root@localhost 
window=120

Figure 2 – Cross-correlating offending events from Netfilter, SSH, and Apache logs

34 – ISSA Journal | August 2012

Security Event Processing with Simple Event Correlator | Risto Vaarandi and Michael R. Grimaila



20 distinct TCP ports, or 40 distinct UDP ports which are all 
firewalled (see figure 3).

Since three threshold conditions are joined with logical OR, 
and the threshold for privileged ports covers both TCP and 
UDP protocols, this problem can not be addressed with the 
EventGroup rule. In order to accomplish this task, Perl hash 
table called hosts is used for memorizing port probes from 
offending IP addresses. For each IP address, this table con-
tains  references to two additional hash tables for TCP and 

UDP port numbers. For evaluating a threshold condition, the 
number elements in relevant hash table(s) is found.

In order to process Netfilter events, three Single rules are 
used. Since the regular expressions for those rules would be 
identical, the match from the first expression is cached for 
further reuse by the following rules, in order to save CPU 
time. After the expression kernel: IN=\S+ OUT= MAC=\S+ 
SRC=([\d.]+) .* PROTO=(TCP|UDP) SPT=\d+ DPT=(\d+) has 
matched,  the ‘varmap’ field of the first rule creates a match 

type=Single 
ptype=RegExp 
pattern=kernel: IN=\S+ OUT= MAC=\S+ SRC=([\d.]+) .* PROTO=(TCP|UDP) SPT=\d+ DPT=(\d+) 
varmap=netfilter; ip=1; proto=2; port=3 
context=!NETFILTER_COUNTING_$+{ip} && !NETFILTER_COUNTING_OFF_$+{ip} 
desc=Create data structures for host $+{ip} 
action=create NETFILTER_COUNTING_$+{ip} 60 lcall %o $+{ip} -> ( sub { delete $hosts{$_[0]}; } ); \ 
       lcall %o $+{ip} $+{proto} $+{port} -> \ 
         ( sub { my($ip) = $_[0]; my($proto) = $_[1]; my($port) = $_[2]; \ 
                 $hosts{$ip} = { “TCP” => {}, “UDP” => {} }; \ 
                 $hosts{$ip}->{$proto}->{$port} = time(); } )  
type=Single 
ptype=Cached 
pattern=netfilter 
context=!NETFILTER_COUNTING_OFF_$+{ip} 
continue=TakeNext 
desc=Count netfilter event for host $+{ip} 
action=set NETFILTER_COUNTING_$+{ip} 60; \ 
       lcall %o $+{ip} $+{proto} $+{port} -> \ 
         ( sub { my($ip) = $_[0]; my($proto) = $_[1]; my($port) = $_[2]; \ 
                 $hosts{$ip}->{$proto}->{$port} = time(); } ) 
type=Single 
ptype=Cached 
pattern=netfilter 
context=!NETFILTER_COUNTING_OFF_$+{ip} && \ 
        $+{ip} -> ( sub { my($ip) = $_[0]; my($port); \ 
                    my($priv) = 0; my($time) = time(); \ 
                    foreach $port (keys %{$hosts{$ip}->{“TCP”}}) { \ 
                      if ($time - $hosts{$ip}->{“TCP”}->{$port} > 60) \ 
                        { delete $hosts{$ip}->{“TCP”}->{$port}; } \ 
                      elsif ($port < 1024) { ++$priv; } \ 
                    } \ 
                    foreach $port (keys %{$hosts{$ip}->{“UDP”}}) { \ 
                      if ($time - $hosts{$ip}->{“UDP”}->{$port} > 60) \ 
                        { delete $hosts{$ip}->{“UDP”}->{$port}; } \ 
                      elsif ($port < 1024) { ++$priv; } \ 
                    } \ 
                    return ($priv == 10 || \ 
                            scalar(keys %{$hosts{$ip}->{“TCP”}}) == 20 || \ 
                            scalar(keys %{$hosts{$ip}->{“UDP”}}) == 40); } ) 
desc=Host $+{ip} has accessed 10 privileged, 20 TCP or 40 UDP ports 
action=lcall %ports $+{ip} -> ( sub { my($ip) = $_[0]; \ 
                     my($tcp) = join(“ “, keys %{$hosts{$ip}->{“TCP”}}); \ 
                     my($udp) = join(“ “, keys %{$hosts{$ip}->{“UDP”}}); \ 
                     return “TCP: $tcp\nUDP: $udp”; } ); \ 
       pipe ‘%ports’ /bin/mail -s ‘Portscan from $+{ip}’ root@localhost; \ 
       create NETFILTER_COUNTING_OFF_$+{ip} 300; \ 
       obsolete NETFILTER_COUNTING_$+{ip} 

Figure 3 – Netfiler firewall rule set

August 2012 | ISSA Journal – 35

Security Event Processing with Simple Event Correlator | Risto Vaarandi and Michael R. Grimaila



returns true in the boolean context. The function first in-
spects the TCP and UDP hash tables for the IP address X, and 
removes port number entries with access times older than 60 
seconds. It will then find the number of remaining entries 
for both hash tables, and also set the $priv variable to the 
number of privileged ports in both tables. The function will 
return TRUE if either 10 privileged ports were found, TCP 
table contained 20 entries, or UDP table contained 40 entries. 
If the context expression evaluates true, the port numbers 
from both hash tables are extracted with the lcall action, 
and assigned as a two-line string to the %ports action list 
variable (the first line lists ports for TCP and the second for 
UDP). The content of the %ports variable is then mailed to 
the local root-user with the pipe action, and the  NETFIL-
TER_COUNTING_OFF_X context is set up for suppressing 
further mails for address X during 5 minutes. Also, the life-
time of the NETFILTER_COUNTING_X context is expired 
with the obsolete action which deletes all hash tables for ad-
dress X from memory.

Conclusion
In this article, we briefly reviewed an open-source and light-
weight event correlation tool, SEC, and provided some rule 
set examples which illustrate the capabilities of this tool. 
SEC has become a widely used event correlating utility dur-
ing the last decade, and is employed by many institutions in 
academia, government, financial sector, telecom sector, and 
other industries. SEC is licensed under the terms of GNU 
GPL and can be freely downloaded.2 In addition, the website 
contains links to useful information and tutorials that will 
help you exploit the power of SEC for event correlation.

Disclaimer

The views expressed in this paper are those of the authors 
and do not reflect the official policy or position of CCDCOE, 
NATO, the United States Air Force, the Department of De-
fense, or the US Government.

References
Active State (2012). Active PERL, Available as of 23 June 2012 at   

http://www.activestate.com/activeperl.   

Anderson, J. P. (1980). Computer Security Threat Monitoring and 
Surveillance, James P. Anderson Co., Fort Washington, PA.

Becklehimer, J., Willis, C., Lothian, J., Maxwell, D., and Vasil, D. 
(2007). Real Time Health Monitoring of the Cray XT3/XT4 Us-
ing the Simple Event Correlator (SEC). Proceedings of the 49th 
Cray User Group Conference.

CygWin (2012). Cygwin Perl, Available as of 23 June 2012 at http://
www.cygwin.com.

Grimaila, M.R., Myers, J., Mills, R.F., and Peterson, G. (2011), 
Design and Analysis of a Dynamically Configured Log-based 
Distributed Security Event Detection Methodology, The 
Journal of Defense Modeling and Simulation: Applications, 
Methodology, Technology, DOI: 10.1177/1548512911399303, pp. 
1-23, March 2011.

2 http://simple-evcorr.sourceforge.net.

cache entry netfilter and stores match variables $1, $2 and $3 
under this name. For the purposes of readability, ‘varmap’ 
field creates additional match variables $+{ip}, $+{proto} 
and $+{port} which are synonyms for $1, $2 and $3, respec-
tively. The second and third rule are not re-evaluating the 
same expression again, but are rather performing a cache 
lookup for the name netfilter. 

Apart from Perl hash tables, the rules are using contexts for 
event counting purposes. The NETFILTER_COUNTING_X 
context (created by the first rule) indicates that event count-
ing is currently ongoing for IP address X. The context life-
time is 60 seconds, and when it expires, the hash tables for X 
are deleted. The deletion is done with the lcall action, which 
passes $+{ip} match variable to the previously compiled Perl 
function sub { delete $hosts{$_[0]}; }. This function 
drops all hash tables for the IP address held by the input pa-
rameter, and the function return value is assigned to the %o 
action list variable. The NETFILTER_COUNTING_OFF_X 
context (created by the third rule) indicates that a warning 
email has already been sent for IP address X, and further 
warnings should not be issued for X.

The first rule initializes data structures for the IP address X if 
the context expression: 

!NETFILTER_COUNTING_X && !NETFILTER_
COUNTING_OFF_X 

evaluates true (! and && denote logical NOT and AND, re-
spectively). In other words, the expression is true if event 
counting is not ongoing and previous warning has not been 
sent for X. If this is the case, the rule sets up the NETFILTER_
COUNTING_X context. Data structures are then initialized 
with the lcall action which passes match variables $+{ip}, 
$+{proto} and $+{port} to a Perl function as input param-
eters. After creating hash tables for X, an entry for the probed 
local port number is stored to the relevant table. For example, 
if remote host 10.1.1.1 has tried to access local port 25/tcp, the 
entry 10.1.1.1 would be created in the hosts hash table which 
points to hash tables for TCP and UDP traffic from 10.1.1.1. 
In the TCP table for 10.1.1.1; the entry 25 would be created, 
which holds the port access time in seconds since Epoch (as 
returned by the Perl time() function). 

The second rule handles further events for already tracked IP 
addresses and updates their hash tables with the lcall action. 
If an already accessed port is probed, its access time is up-
dated, otherwise a new entry for the port number is created. 
In addition, the lifetime of the NETFILTER_COUNTING_X 
context is extended for 60 seconds with the set action which 
ensures that Perl hash tables for IP address X will exist dur-
ing the next minute. Also note that the second rule has the 
‘continue’ field set to TakeNext which passes every matching 
event to the following rule for further processing (the default 
is not to pass matching events to following rules).

The third rule employs Perl functions both in the ‘context’ 
and ‘action’ fields. The ‘context’ field verifies that the 
context NETFILTER_COUNTING_OFF_X does not exist 
and that the Perl function (second operand of logical AND) 

36 – ISSA Journal | August 2012

Security Event Processing with Simple Event Correlator | Risto Vaarandi and Michael R. Grimaila



About the Authors
Dr. Risto Vaarandi received his PhD in 
Computer Engineering from the Tallinn 
University of Technology, Estonia, in June 
2005. Since 2006, he has been working as a 
scientist in NATO Cooperative Cyber De-
fence Centre of Excellence. He is the creator 
of Simple Event Correlator, an open-source 
event correlation tool used widely in the se-
curity community. Risto’s research interests include event corre-
lation, system and network monitoring technologies, data min-
ing, and cyber security. He may be reached at risto.vaarandi@
gmail.com.

Dr. Michael R. Grimaila, CISM, CISSP, is 
a Professor of Systems Engineering and a 
member of the Center for Cyberspace Re-
search at the Air Force Institute of Technol-
ogy (AFIT), Wright-Patterson AFB, Ohio 
USA. He is a member of the ACM, a Se-
nior Member of the IEEE, and a Fellow of 
the ISSA. Dr. Grimaila’s research interests 
include quantum cryptography, mission 
assurance, network management and security, and systems en-
gineering. He may be reached at michaelgrimaila@yahoo.com.

Jakobson, G., and Weissman, M. (1995). Real-time telecommu-
nication network management: Extending event correlation 
with temporal constraints, Proceedings of the 4th International 
Symposium on Integrated Network Management, pp. 290-301, 
1995

Myers, J., Grimaila, M.R., and Mills, R.F. (2011). Log-Based Dis-
tributed Security Event Detection Using Simple Event Correla-
tor. Proceedings of the 44th Hawaii International Conference 
on System Sciences, pp. 1-7.

Rouillard, J.P. (2004). Real-time Logfile Analysis Using the Simple 
Event Correlator (SEC). Proceedings of the USENIX 18th Sys-
tem Administration Conference, pp. 133-149. 

Sah, A. (2002). “A New Architecture for Managing Enterprise Log 
Data,” LISA, pp. 121–132.

Swift, D. (2006), “A Practical Application of SIM/SEM/SIEM 
Automating Threat Identification,” Technical report, SANS 
Institute, December 23, 2006.

Vaarandi, R. (2006). Simple Event Correlator for real-time security 
log monitoring, Hakin9 Magazine 1/2006 (6), pp. 28-39.

Vaarandi, R., and Podins, K. (2010).  Network IDS Alert Clas-
sification with Frequent Itemset Mining and Data Clustering, 
Proceedings of the 6th Conference on Network and Service 
Management, pp. 451-456. 

Implementing Least Privilege for Interconnected, Agile SOAs/Clouds

matically. It is “Open” because it is based on open standards 
where possible (e.g., Eclipse EMF, and web app server secu-
rity APIs, XACML, syslog) and is designed as a customizable, 
future-proof toolkit, easily expandable to both legacy devices 
and new kinds of devices from different vendors. 

Figure 1 illustrates the process at a high abstraction level: A 
model-driven development process is depicted in the right 
half of the figure. Application interactions are modeled using 
a service orchestration (or similar) tool, which basically allows 
application modules to be “plugged together.” The actual ap-

plication is the integrated orchestration of those modules (1). 
The orchestration tool automatically deploys and integrates 
the modules as modeled. This process provides valuable, reli-
able information about the application with its interaction to 
the model-driven security process, which works as follows. 

The first step of automation involves meta-modeling the 
features of the security policy using a Domain-Specific Lan-
guage (DSL) (2). Then the security policy is modeled (3) 
using features specified in the meta-modeled DSL. If neces-
sary the policy generation workflow can be customized (4). 

The model-driven security component 
policy enforcement points (PEP) are 
installed into the runtime platform (5). 
The security workflow can then auto-
matically generate fine-grained, con-
textual, technical security policy rules 
(6), taking into account various sys-
tem and context information, includ-
ing the application integration model 
(1) used to build the application (7). 
The technical security rules are then 
automatically pushed into the policy 
enforcement points for enforcement. 
Whenever applications change (esp. 
the integration), the technical secu-
rity rules can be automatically re-

Continued from page 23.

Figure 1 – Model-Driven security policy automation overview

August 2012 | ISSA Journal – 37

Security Event Processing with Simple Event Correlator | Risto Vaarandi and Michael R. Grimaila




